Fisheries Biology, Assessment & Management

Lecture 2 (part 2)

How Many Fish could there be?

(The Science of Fish Stock Management)

Stock Assessment (2)

- "Tuning" of VPA (using CPUE & Survey indices)
 - Extended Survivors Analysis
- Yield-per-Recruit Calculations
- Stock-Recruitment Relationships
- Catch Forecasts (for TAC's)

Remembering ...

- Processes
 - "Birth", Growth, Maturation, Reproduction,
 Death (due to fishing and natural causes)
- Stock abundance
 - as numbers, or as biomass
 - by age, and by year (yearclasses/cohorts)
- Yield : catches and death rates due to fishing
 - the effect of various levels of fishing effort
 - on yield and (spawning stock) biomass
- Recruitment : dependence on spawning stock

Questions asked by "managers"

- The effects of current exploitation rates ?
- Potential for improvement ?
 - Increased yields and/or biomass
 - now (short-term) or future (long-term)
- Possibility of "Optimal" Exploitation ?
- Sustainability?
- Desirable Conservation Measures ?
 - direct (controls on catch or effort)
 - "technical" (mesh sizes, closed areas)

Assessing the effects of exploitation

- on Yield, and on SSB
- at the current level of Fishing Mortality
- with the current exploitation pattern
 - (ie. pattern of F as a function of age/size)
- at higher and lower levels of F
- with alternative exploitation patterns
 - achieved by "Technical" Conservation Measures (mesh size limits, closed areas)

Stock-Production Models

- Work with whole Stock (biomass), and Production
 - i.e. Biomass growth, due to recruitment and individual growth
- Do not use age/size data
- Usually steady-state (but need not be so)
- Models of Schaefer and Fox
- Are generally unreliable
- Possibility of stock collapse is included

"Dynamic Pool" Models

- Beverton & Holt (1957)
- "cleave" the problem into two parts
- Analysis of Yield (and Biomass) per Recruit
- Analysis of the Stock-Recruitment Relationship
- N.B. other factors affecting recruitment are unpredictable: so do the analysis assuming
 - "other things being equal"
 - in effect, for (at) constant recruitment

YPR & SBPR as mathematics

$$\begin{split} Y &= \int \frac{dC}{dt} w(t) dt \\ &= \int F(t) P(t) w_c(t) dt \\ &\approx \sum_a F(a) P(a) w_c(a) \frac{[1 - \exp\{-Z(a)\}]}{Z(a)} \\ &\text{where} \\ P(a) &= \exp\{-Z(a)\} P(a-1) \\ &= R \exp\{-\text{cum} Z(a)\} \\ Y &= R \sum_a F(a) \exp\{-\text{cum} Z(a)\} w_c(a) \frac{[1 - \exp\{-Z(a)\}]}{Z(a)} \\ B &= R \sum_a \exp\{-\text{cum} Z(a)\} w_s(a) f_{mat}(a) \end{split}$$

Biomass-per-Recruit (pseudocode)

- Work with a single cohort (1 recruit!)
- For each level of Fishing Mortality
- and for each age
 - Calculate stock numbers-at-age
 - Use (stock) weights & maturity-at-age
 - Calculate spawning biomass-at-age
- Sum for all ages (sum of products)
- Plot BPR as a function of F
- Have already done most of this!

Biomass-per-recruit calculation

North Sea Cod: Yield & Biomass Per Recruit Analysis

M =	0.2	N.B. ICES WG uses an age-dependent natural mortality							
Age	Weight	F	Mat	Population	Biomass	Catch(Num)	Catch(Wt)		
1	0.69	0.09	0.01	1000	7	78	54		
2	1.08	0.64	0.05	748	40	324			
3	2.29	0.83	0.23	323	170	167	383		
4	4.30	0.81	0.62	115	307	59	253		
5	6.64	0.76	0.86	42	240	21	136		
6	8.38	0.81	1.00	16	135	8	69		
7	9.80	0.87	1.00	6	57	3	31		
			Total		957		1276		
N.B. Divide by assumed Number of Recruits				BPR=	0.957	YPR=	1.276		

Both are expressed as kg/recruit

Note: Both YPR and BPR are approximately equal to the weight of a (young) fish

YPR & SBPR as mathematics

$$\begin{split} Y &= \int \frac{dC}{dt} w(t) dt \\ &= \int F(t) P(t) w_c(t) dt \\ &\approx \sum_a F(a) P(a) w_c(a) \frac{[1 - \exp\{-Z(a)\}]}{Z(a)} \\ &\text{where} \\ P(a) &= \exp\{-Z(a)\} P(a-1) \\ &= R \exp\{-\text{cum} Z(a)\} \\ Y &= R \sum_a F(a) \exp\{-\text{cum} Z(a)\} w_c(a) \frac{[1 - \exp\{-Z(a)\}]}{Z(a)} \\ B &= R \sum_a \exp\{-\text{cum} Z(a)\} w_s(a) f_{\text{mat}}(a) \end{split}$$

Yield-per-Recruit Analysis (pseudocode)

- Work with a single cohort (1 recruit!)
- Use the Catch Equation
- For each level of Fishing Mortality
- and for each age
 - Calculate catch numbers-at-age
 - Use (catch) weights-at-age
 - Calculate yield (in weight) at this age
- Sum for all ages (sum of products)
- Plot YPR as a function of F

Yield-per-recruit calculation

North Sea Cod: Yield & Biomass Per Recruit Analysis

M =	0.2	N.B. ICES WG uses an age-dependent natural mortality							
Age	Weight	F	Mat	Population	Biomass	Catch(Num)	Catch(Wt)		
1	0.69	0.09	0.01	1000	7	78	54		
2	1.08	0.64	0.05	748	40	324	350		
3	2.29	0.83	0.23	323	170	167	383		
4	4.30	0.81	0.62	115	307	59	253		
5	6.64	0.76	0.86	42	240	21	136		
6	8.38	0.81	1.00	16	135	8	69		
7	9.80	0.87	1.00	6	57	3	31		
			Total		957		1276		
N.B. Divide by assumed Number of Recruits				BPR=	0.957	YPR=	1.276		

Both are expressed as kg/recruit

Note: Both YPR and BPR are approximately equal to the weight of a (young) fish

Practical Session

Yield-per-recruit calculation

Features of YPR/BPR analysis

- Concentrates on effects of fishing
- De-emphasises environmental influence
 - on growth, maturity, natural mortality, etc
- Diverts attention from recruitment
- Is a long-term, steady-state calculation
- Does not depend (much) on current state
- Can be done using biological data only
 - does not require results of VPA etc
 - can evaluate changes of mesh size, etc

More features of YPR/BPR analysis

- Applicable when fishery data is limited
 - e.g. catch data incomplete, or no age data
- Can compare current F with F_{max}
- Indicates whether under/over-exploited
 - w.r.t. "growth overfishing"
- Sufficient for Effort Control (?)
 - increase/decrease by some amount
- Optimum yield (not MSY) occurs at F_{max}
- But this may not be a realistic estimate

But ...

What about recruitment if the stock size is reduced ???

Stock-Recruitment Analysis

- Requires time-series of recruitment and spawning stock biomass estimates
- VPA is necessary (and ideal for this task)
- Data is highly scattered ("noisy")
 - due to real variability (process noise)
 - not to errors (measurement noise)
- Statistical analysis is necessary
 - but tricky
- Problems are still not entirely solved

Stock-Recruitment Relationships

Beverton-Holt

• R = a B / (1+ B/K) asymptotic

Ricker

• R = a B exp{ -B/K } domed

Cushing

• R = a B^c power law

Shepherd

• R = a B / [1+ (B/K)^c] versatile

Fitting SRR's by regression

- Beverton-Holt
 - Regress (B/R) versus B dodgy
- Ricker
 - Regress In{R/B} versus B
 recommended
- Cushing
 - Regress In{R} versus In{B} exploratory
 - useful for exploratory analysis, but not for practical application: not precautionary (no collapse)
- Shepherd
 - · need non-linear curve fitting routine
 - data rarely adequate to fit 3 parameters

The possibility of stock collapse...

- Slopes of survival lines (constant SBPR)
 - correspond to levels of Fishing mortality
- Slope at the origin is the vital factor
 - indicates level of F at which the stock is expected to collapse
 - due to "recruitment overfishing"
- It is difficult to estimate ...
- But it is vitally necessary for applying a precautionary approach to management

North Sea Cod: as assessed by Cook et al (Nature 1997)

The foreseeable demise of the North Sea cod

- In 1997 Cook et al predicted
 - probable collapse at F = 0.9 to 1.1
 - NB: current F is ~ 0.8 : has been ~ 1.0
 - MSY is ~ 300kt (at F=0.65, SSB=300kt)
 - c.f. recent average yield of about 100 kt (at F ~ 0.9, SSB < 100kt)</p>
 - Present SSB is about 35 kt
- Management advice from ICES has been (for many years...)
 - to reduce Fishing Mortality
 - by at least 30% (to ~ 0.6) ASAP
 - preferably by 50% (to <0.5) in the long-term

Combined Yield Analysis (1) why do it?

- Combine YPR/SBPR and SRR analyses
 - to give yields & biomasses in tonnes
 - to estimate MSY and F_{msv}
 - taking account of possible collapse
- Recreates the whole picture
- Reverses the Beverton-Holt "cleavage"
 - (clever but dangerous...)
- which was what was wanted !!

Combined Yield Analysis (2) how to do it

- Suppose SRR is estimated as R = a B f(B)
 - Where a and f(B) are known
 - (because they have been fitted to the data)
- For each selected value of F
- use the YBPR calculation, to estimate
 c=Y/R, and b = B/R
- However, R/B = af(B) = 1/b, so one can solve for B, since $B = f^{-1}(1/ab)$
 - $-[e.g.: B = K In{ab}]$ for a Ricker curve]
 - then calculate R = B/b
 - and finally, Y = R(Y/R) = cR

Overview

- What is the state of the stock?
 - VPA/Cohort Analysis
- How could/should it be exploited?
 - YPR/SBPR Analysis
- Might it collapse ??
 - · Stock-Recruitment Analysis
- Overall synthesis
 - · Combined Yield Analysis
- Compare actual with possible
- Advise on management measures needed

Next Lecture

- What forms of management are possible?
- How can they be implemented?
 - Effort Regulation
 - Catch Forecasts for TAC's
 - (Total Allowable Catches)
 - Other possibilities
- Is Sustainable Exploitation Possible ???