
Simple but very useful models of the atmosphere 
 
3.1) Basic descriptions of the atmosphere 
 

3.1.1) Vertical atmospheric processes 
 

The vertical is the second most important dimension, after latitude, because there are... 

Strong gradients (of  temperature, humidity, etc) 

Significant flux divergences 

(N.B. the zonal  fluxes are also large, but their divergences are quite small) 

The most important vertical processes are 

convection 

large-scale  ascent & descent (subsidence) i.e. the meridional circulation 

small-scale turbulent overturning & mixing (unstable stratification) 

radiation absorption and re-emission (some SW, but especially LW)  

 

3.1.2) Convection & Atmospheric lapse rates 
 

The troposphere is (on average) just stable, but there are major differences between 

regions of ascent (active convection) and descent (subsidence). 

In ascending regions (which are small) the stratification is slightly unstable, and the air is 

mostly saturated with water vapour (because of cooling and condensation). The lapse 

rates tend towards the moist adiabatic value,  i.e. Γ < 6 °C/km. 

In descending regions (which are large) the stratification is slightly stable, and the air is 

under-saturated (because it has been dried out by condensation & precipitation during its 

ascent). The lapse rate tends towards the dry adiabatic, i.e. Γ ≈10 °C/km. 

As a result, large-scale spatially averaged lapse rates are actually rather close to 6.5 

°C/km almost everywhere (because of lateral mixing by eddies, etc) 

 

3.1.3) Relative Humidity 
 

The relative humidity of the air is likewise high (≈100%) in ascending air (where 

condensation occurs), and low (usually much less than 60%) in the descending dry air. 



Over the sea, evaporation causes RH to increase rapidly (to ≈ 85% or more). Over land, 

the humidity depends on P-E (Precipitation-Evaporation), which is 

high in the tropics (in the ITCZ) , and at mid-latitudes, near ± 60 ° N/S 

low around ± 30 ° latitude and near the pole, because of subsidence, (which is why there 

are deserts there...) 

Overall, relative humidity (at ground level) is in the range 75 ± 20 % almost everywhere 

(but NB “almost everywhere” is mostly over the sea !!) 

 

3.1.4) The  “US standard” atmosphere 
 
A very basic description of the atmosphere is given by the  “US standard” atmosphere, 

which has 

• lapse rate = -6.5 °C/km everywhere 

• RH = 75 % everywhere 

Ascent (and excess precipitation) near the equator and  around ± 60 ° latitude 

Subsidence (and excess evaporation) near the poles and around ± 30 ° latitude 

Thus the meridional circulation is broadly described in terms of the Hadley and Ferrel 

circulation cells. 

 

3.2) Radiative-convective models of "grey" atmospheres 
 

3.2.1) Introduction 
 
We shall use the  “grey” atmosphere model, i.e. where there is partial absorption of infra-

red radiation, which independent of wavelength. Thus atmosphere has a finite optical 

thickness in the infra-red (so it is optically neither  very thick nor very thin). The simplest 

case is to consider the two-stream approximation, in which there are vertical fluxes (up-

welling and down-welling) of thermal infra-red radiation only. We seek to deduce the 

temperature gradient (and thus Ts) for various cases (e.g. levels of insolation, optical 

thickness, etc). The following treatment is based on  [Salby, 1992 #3107](in [Trenberth, 

1992 #3185]) and  [Houghton, 1997 #3186]. See also [Goody, 1995 #486] for a more 

complete treatment. 



 

Divide the atmosphere into thin layers, each of optical thickness ∆τ, and let τ  be 

measured downwards from the top of the atmosphere (TOA), like pressure. Thus τ is a 

function of altitude and pressure (p), and for a dry atmosphere may be taken to be 

proportional to pressure.  If the upward infra-red (ΙR) flux is Fup, and the downward IR 

flux is Fdn, then the net IR flux Fnet = Fup – Fdn. The net upward IR flux at the top of the 

atmosphere (TOA) is  F0 = Fnet(0), which by energy balance must moreover be equal to 

the net absorbed solar (SW) radiation, so  F0 = (1 −α) S. 

 

Now,  consider the augmentation and dimunition of both Fup and Fdn for each thin slab of 

atmosphere, of optical thickness ∆τ, due to the absorption and (black-body) re-radiation 

of the infra-red radiation (see Figure 1). Remembering that the emissivity of each layer is 

the same as its absorption coefficient (which is, by the definition of optical thickness, just 

equal to ∆τ), and considering first the downwelling radiation (which is oriented in the 

same direction as τ, i.e. downwards from the top of the atmosphere) one finds that  

∆Fdn = – Fdn ∆τ  + B(T) ∆τ,   

(1) 

where B(T) = σT4 (the usual expression for black – body radiation from a surface) 

so that any reduction of  Fdn by absorption is opposed by the increment due to the re-

radiation occurring within the thin slab. Note also that while B is fundamentally a 

function of local air temperature, it may also be regarded as a function of altitude, 

pressure or optical thickness, whichever is more convenient, since temperature is a 

function of all of these variables too. Taking the limit of infinitesimally thin layers, we 

have 

dFdn/dτ = – Fdn + B(T) 

(2) 

Note that  Fdn  is zero at the top of the atmosphere, and increases downwards, because 

B(T) is always positive, and thus initially (and in fact always) exceeds Fdn.  The case of  

Fup is potentially (and actually) quite confusing, because Fup  is orientated in the opposite 

direction to τ, so that the sign of  ∆Fup  across the slab is reversed, and thus 



− ∆Fup = – Fup ∆τ+ B(T) ∆τ,  

(3) 

and so, again taking the infinitesimal limit 

dFup/dτ = Fup – B(T). 

(4) 

These expressions for  Fup and  Fdn  may be integrated directly (but usually this must be 

done numerically) for any given temperature profile T(z), provided that we know τ as a 

function of altitude i.e. τ(z) and vice versa. However, in general T(z) is not known a 

priori and must also be determined. We shall consider how to do this in the case of both 

pure radiative equilibrium, and for the radiative-convective case in which convection 

occurs if the temperature profile becomes unstably stratified. Before doing so it is useful 

to derive the expressions for the inter-relation between  Ftot and Fnet. Adding and 

subtracting the expressions (2) and (4) for  Fup and  Fdn  we obtain 

dFnet/dτ = dFup/dτ  −  dFdn/dτ ,  ∴ dFnet/dτ  =  Ftot – 2B(T)  

(5) 

and   

dFtot/dτ = dFup/dτ  +  dFdn/dτ  =  Fup – Fdn ,    i.e. dFtot/dτ =  Fnet   

(6) 

Thus the rate of change (w.r.t.  τ, and thus also altitude) of the total flux depends only on 

the net flux Fnet (and is in fact proportional to it), and does not depend on temperature at 

all. The rate of change of the net flux, however,  is in general determined by the 

imbalance between the average flux (Ftot/2) and the value of B(T).  

 

3.2.2) Pure Radiative Equilibrium  
 

We consider first the case in which the medium is static (i.e. there is no convection or 

small-scale mixing, etc), so that only the radiative processes are in operation. To derive 

the equilibrium conditions, we assume that we have local energy balance, which is thus 

(by assumption) due to radiative processes only. At thermal equilibrium, the divergence 

of the net IR flux must be zero, so dFnet/dz = 0, and thus also dFnet/dτ = 0, and  Fnet must 



be a constant. This constant must thus also be just equal to the net upward IR flux at the 

top of the atmosphere,  i.e. 

Fnet = F0 , everywhere 

(7) 

However, from equation (5) we also find that 

dFnet/dτ = Ftot – 2B(T) = 0  

and in this case we therefore deduce that  Ftot = 2B(T).  Thus, for this case of pure 

radiative equilibrium, the local temperature must be just such that  

B(T) = Ftot/2. 

(8) 

However, recalling that Fnet =  F0, which is a constant, we may also easily integrate the 

expression (6)  for dFtot/dτ, as  

Ftot =  ∫ F0dτ = F0 ∫ dτ  =  F0τ + const   

(9) 

Since Fdn is zero at the top of the atmosphere (where τ = 0),  Ftot(0) =Fup(0) = F0, and the 

constant of integration must also be equal to F0, and so 

Ftot = F0 (τ + 1)  

(10) 

Now, in order to find the temperature as a function of τ, and thus of altitude,  we shall 

consider B as a function of optical thickness B(τ) rather than of temperature. Recalling 

(from equation 8) that B(T) = Ftot/2, we may now write 

B(τ) =  σ T4  =  F0 (τ + 1)/2 

(11) 

From this expression we can now see that the temperature at the altitude where the  

optical thickness (depth) is 1 must be such that  [B]τ=1 = B(1) = F0 = σ Teff
4. This justifies 

the statement that the actual air temperature is equal to the effective radiative 

temperature, not at the top of the atmosphere, but at the altitude where τ = 1. In fact, at 

the top of the atmosphere, where τ = 0,  we have B(0) = F0/2, so that the air temperature 

tends to the (lower) value of 

TTOA = ( F0/2σ)1/4  



(12) 

In order to determine the temperature at the ground surface (Tg) for this purely radiative 

equilibrium, we need to consider the upward flux of infra-red radiation, since  

[Fup]z=0 =  σ Tg
4 

(13) 

Since  Fup =  (Ftot + Fnet)/2 =  (Ftot + F0)/2, we find using equation (10) that 

  Fup =  {F0 (τ + 1) + F0}/2 =  F0 (1 + τ/2) 

(14) 

Finally therefore, we also deduce that  

 Fdn = Fup − Fnet = Fup − F0 =  F0 (τ/2)  

(15) 

Thus in the special case of pure radiative equilibrium, Fnet is constant and equal to F0, and 

both Fup and Fdn increase linearly with optical thickness. This is illustrated in Figure 2 

(see also [Salby, 1992 #3107][Houghton, 1997 #3186]). 

However, it is very important to notice that the (ground) surface temperature is set by Fup 

through equation (13), i.e.  

σTg
4 = [Fup]z=0   = F0 (1 + τ/2) 

(16) 

whereas the air temperature just above the ground is set by Ftot through equation (11) so 

that  

σT0
4 = B(τ) =  F0 (τ + 1)/2 

(17) 

Problems with the pure radiative model 
 

There are several problems with the results which we have now obtained. Firstly, the 

ground surface temperature derived above exceeds that of the overlying air in this model, 

by an amount corresponding to an extra heat flux of F0/2. This calculated ground-air 

temperature discontinuity may be substantial (10 or 20 °K, or more). It only occurs 

because we have assumed that the only heat fluxes are those due to radiation, so there is 

no conduction and no turbulent convection. In the real atmosphere these would operate 

together, as conduction will transfer heat into the air near the ground, creating an unstable 



stratification which will cause convection to occur. For this reason the pure radiative 

model is unsatisfactory for a real conductive, fluid atmosphere. 

Other (related) problems can also be identified. From the results above, the effective IR 

emissivity (or transmission coefficient) of the atmosphere is   

 ε = F0/Fup (τg) = 1/(1 + τg/2) 

(18) 

where τg  is the optical thickness of the whole atmosphere, integrated from the top to the 

ground. Since we know from observations and the simple energy balance model that the 

effective value of ε is about 0.65, we can deduce that τg needs to be about 1,  to be 

consistent with the observations. This is substantially less than the actual measured 

values of τg, which are about 4 at mid-latitudes. 

More precisely, since σTg
4 = F0 (1 + τg/2) , and F0 = σTeff

4,   we have 

Tg
4 = Teff

4 (1 + τg/2), and thus   

τ g = 2(Tg
4/Teff

4 – 1) 

(19) 

Taking  Tg = 288K,  and Teff = 255K,  this implies that  τg = 1.254. However, we saw 

above that  Teff  is (or should be) the temperature at the altitude Heff  where τ=1.  Taking τ 

to be proportional to pressure, this implies that 

Heff = (1/1.254)x 1000 mbar ≈ 800 mbar 

 (20) 

However, the temperature difference  ∆T = Tg − Teff  = 33 K and using an atmospheric 

lapse rate of  6.5 °C/km, this implies that Heff = 5 km which corresponds to a much 

greater altitude of about 500 mbar. 

These problems indicate that the pure radiative model is inconsistent with several key 

observations, and is not an adequate first-order model for the heat transport processes of 

the lower atmosphere. This is not a big surprise. To fix the problems we need to consider 

firstly the effects of convection, and secondly the effect of the very non-uniform 

distribution of water vapour in the atmosphere. 

 

3.2.3) Convective adjustment, and the "dry" radiative-convective model 



 

In Figure 3 we plot the temperature profiles corresponding to equation (11) for values of 

τg  in the range 1 to 10, along with a profile corresponding to the adiabatic lapse rate. We 

see that in the upper atmosphere the radiative profiles are always stably stratified, so the 

static radiative model should be a reasonable approximation (because conduction is 

trivial compared with turbulent convection). In the lower atmosphere, however, the 

temperature profiles are always unstable (super-adiabatic) if we take the discontinuity at 

the ground into account, and sometimes unstable even at mid-altitude for large values of  

τg .  

**** Stratosphere/Troposphere 

The simplest assumption to make would be that the temperature profile should be 

replaced by the adiabatic profile if it is unstable, but not otherwise. However, this leads to 

local air temperatures which are different from those implied by equation (11), so that the 

analytical treatment of section 3.2.2 (which implicitly assumes that they are the same) is 

no longer valid. We must therefore return to the more general equations of  section 3.2.1, 

and integrate equations (5) and (6) using the actual air temperatures deduced from the 

adiabatic profile, which can in general only be done numerically (but see also 

[Pierrehumbert, 2002 #3187] for some interesting special cases).  

 

 

Pseudo-code for a radiative-convective calculation 

calculate radiative fluxes (divergence) 

update temperature profile 

if unstable w.r.t. chosen lapse rate 

apply convective mixing → desired lapse rate 

 (conserve heat, water, etc) 

→ implied convective heat flux... 

repeat → radiative-convective equilibrium 

→ tropo-pause & (unrealistic) stratosphere 

 

1-D RCM’s : features 



 

Can include various radiatively active gases 

(water vapour, ozone, CO2, methane etc...) 

better representation of stratosphere... 

allows direct estimation of GH effects 

and thus climate sensitivity 

clouds : e.g. if RH > RHcrit  ≈ 90 % 

specify albedo (≈ 0.5) or estimate (diffuse scattering) 

specify cloud height & depth 

fixed cloud top height, or temperature (?) 

several cloud layers ? (how to model ?) 

 

1-D RCM’s : in practice 

 

Consider 

many (≈ 20) layers 

many radiatively active “species” (gases etc) 

integration over many spectral lines and bands, and over a continuum (8 to 13 µm) 

both UV/Visible and IR radiation 

particulate scattering... 

Complex and time-consuming calculations...! 

Computational demand of radiation code may exceed that of fluid flow, in GCM’s  

 

1-D Radiative-Convective Models 

 

valid locally (isolated, pointwise), or global mean 

but results vary with latitude/insolation 

→ latitudinal variation of tropo-pause height, etc 

but ⇒ inconsistency : not in local vertical balance 

need to allow for lateral transports 

⇒ need 2-D (meridional/vertical) model (at least !) 



 


