

Key Issues

- ♦ Climate Change : the next millennium (?)
 - oceanic response (THC), exhaustion of fossil fuels
- ♦ Natural variability
 - palaeoclimate studies provide the context
- ♦ The Hydrological cycle: regime shifts ?
- ♦ The Carbon cycle
 - and so also nitrate, phosphate, oxygen, alkalinity...
- Carbon Management
 - especially sequestration of CO₂ (?)
 - Integrated Assessments (technology & socio-economics)
- ♦ Other Ecosystem level impacts
 - especially acidification & calcification problems ?

Processes & Timescales								
Time-scale (years)	Planetary	Continents	Land	Sea	Atmosphere	Ice	Biosphere	
Billions	Solar evolution	Solar Formation Erosion & Formation olution & Accretion deposition Evolution		Formation & Evolution	Formation & Oxygenation	Snowball Glaciations	Origin of Life, "Mostly bacteria"	
~1e8		Continental Drift	Colonisation by plants	Basin formation		Mostly warm & ice-free	Plants & animals	
~1e7		Volcanic episodes	Mountain building	Sediment accumulation		Episodic Glaciations	Mass extinctions	
Millions		Crustal weathering		Chemistry (calcium)		Polar ice- caps	Species extinctions	
~1e5	Insolation (Eccentricity)			Sea-level changes		Glacial cycles		
~1e4	(Obliquity & precession)			Chemistry (phosphate)		Last glacial to Holocene		
Thousands	Solar Variations ?			Thermo-haline circulation	Millennial (DO) Oscillations		Eco-system evolution	
~100	ditto				Abrupt Climate Changes			
~10	ditto			O-A Coupled Modes?	Decadal Modes?			
~1						Sea-ice variability		

Structure & Resolution versus Timescales

- Dimensionality & structure
 - from 0D (EBM's and box models) to 3D (GCM's)
 - Order of importance ≈ vertical, latitude, longitude...
 - N.B. Land/Sea/Ice distributions at sub-grid scales ?
- Resolution : how much is enough?
 - High/Fine : <1° lat/long, with >15 levels (atmosphere & ocean)
 - Moderate : 1° to 5° , with 5 to 10 levels
 - Low/Coarse : $> 5^{\circ}$, with < 5 levels

 Time-scales of major variations and events of interest determine the integration times needed

- decadal, millennial, glacial and beyond (to >100 Myr)
- Time-scales of major variations of forcing...
 - diurnal, seasonal, annual, decadal, millennial, orbital...
- ...and the rates of processes, the spatial resolution & the methods used determine the max. permissible time-step

ESM's and "Complexity"

- ♦ High spatial resolution (especially of fluids...)
 - => **many variables** (of approx the same sort)
 - => short time-steps, and **high computational cost**

♦ Many (diverse) processes

- **Hydrology** (evaporation, precipitation, run-off...)
- Sea-ice (accumulation, melting, advection, fractures...)
- Ice-sheets (accumulation, ablation, flow, deformation...)
- Carbon-cycle (land, sea, plants, bacteria, animals (???)
 - production, respiration, nutrients, re-mineralisation, sediments
- => many (diverse) parameters
- In future, we need **both** of these
 - => potentially **much higher computational cost**
 - a role for Intermediate Complexity Models (EMICS)
- Simpler models facilitate *scientific understanding*

Model	Institute	Dimension		Total	"Cells"	M/C	CPU
		Ocean	Atmos	Ocean	Atmos	type	(hours
							per kyr)
Bern 2.5D	Univ. of Bern	2.5	1	504	17	WS	0.05
CLIMBER-2	РІК	2.5	2.5	4320	252	WS	2
ECBilt-2	KNMI	3	2.5	38912	6144	SG(2)	336
CLIO-E-V	Louvain	3	2.5	144000	6144	WS	300
RAS	IAP Moscow	2.5	3	7200	19200	WS	125
МРМ	McGill Univ	2.5	1.5	648	216	WS	8
IGSM	МІТ	3	2	60750	216	WS	200
MoBidiC	Louvain	2.5	1.5	1620	72	WS	3
PUMA-LSG	MPI Hamburg	3	3	28512	10240	Cray	24
ESCM	U. Victoria (BC)	3	2	190000	~10000	SP2	240
HADCM3	Hadley Centre	3	3	262656	87552	Cray	10000
FORTE	SOC/Reading	3	3	60750	45056	WS/PC	~1000
C-GOLDSTEIN	SOC/Univ.Bern	3	2	10368	1296	W/S	~ 1

Where next? We need to...

- run ensembles and/or explore parameter space
 - hundreds to thousands of runs (also for **Integrated Assessments**)
- ♦ and/or **extend integration times** (to > 30 kyr)
 - for (e.g.) glacial cycles & nutrient residence times
- requires moderate resolution models and faster schemes
- go to **3D**, and "populate the spectrum" of models
 - in both *structure* and in *resolution*
 - "horses for courses"
 - inter-compare (up/down the spectrum)
- promote scalability and modularity
- develop new & better parameterisations...
- **Play !!** (to truly understand model behaviour)
 - and to allow for accidental discoveries ...
 - ...but this probably requires over-night runs (at most)

Populating the model spectrum

"horses for courses"

(where length of "course" ≈ simulated integration time) => processes which need to be represented

- ♦ > 10 Myr: tectonics, subduction, vulcanism, ocean basin formation & destruction, carbonate rock formation & recycling
 - 1D and box models
- **30 kyr to 10 Myr**: silicate rock weathering, ocean calcium and carbonate balance, biological production, sedimentation
 - 1D/2D models, to very coarse ICM's
- **300 yr to 30 kyr:** ocean circulation, nutrient biogeochemistry & recycling, biological production
 - 2.5D/3D models, moderate ICM's, to low-res GCM's
- **up to 300 years:** well-resolved ocean & atmosphere circulations, land surface hydrology, terrestrial biosphere, etc
 - 3D models, high-res ICM's to maximum-resolution GCM's

res	Poj olution (s	pul a Com	a tin plex	n g tl kity me)	he n ≈ det versu	10d tail >	el sp × proc	ectru cesses	IM Tration	time
	Physical and Bio-geo-						n/Atmos			
	Maximum	n -chemical Processes								
Approx	Integration					0D	1D/1.5D	2D/2.5D	3D	
Cells	Time (yrs)	Р	С	В	G					Examples
3	> 30M		*****	*	**	hox				many
30	2 00M		*****	**	****	box	I CM			Pandora
300	. SM	*	*****	***	***	box	L CM	I -ICM		Bern
1k	1M	**	****	****	**	JUN	I -ICM	I -ICM		Louvain
3k	100k	**	****	****	**			M-ICM	M-ICM	PIK(Climber)
10k	30k	***	***	****	*				M-ICM	C-Goldstein
30k	10k	***	***	****	*				H-ICM	GENIE
100k	3k	***	**	**					VH-ICM	FORTE
300k	1k	***	**	**					L-GCM	HADCM3
3M	300	****	*	*					M-GCM	
30M	30	*****							H-GCM	OCCAM
300M	10	*****							VH-GCM	

Parameterisation

♦ is a high order intellectual activity

(J. McWilliams)

- not a dirty word !
- ♦ requires "asymptotic feasibility" (credibility)
- should preferably be based on "sound science"
- we could & should
 - "cascade" parameterisations up/down the spectrum
 - use sub-grid scale statistical representations more extensively (c.f. hydrology)
 - i.e. work with p.d.f.'s (percentile values) within cells ?
 - for hydrology, topography, clouds, ice, vegetation, etc...

Relevant activities elsewhere

- US Carbon Cycle Programme:
 see http://www.carboncyclescience.gov/
- IGBP programmes, especially GAIM
- EU programmes, especially PRISM
- ♦ e-science (GENIE)
- Tyndall Centre (et al.)
 - Integrated Assessments

