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Abstract

Numerical calculations of advection-diffusion problems (such as the long-term evolution of deep
ocean temperature, salinity and other property distributions) are often severely constrained by the
Courant-Friedrichs-Levy (CFL) time-step limit and/or the equivalent diffusive stability limits.
Implicit numerical schemes are an effective way of overcoming these limits, but both direct and
iterative methods for solving the implicit equations can be difficult and time-consuming to
implement especially for two and three-dimensional flows with irregular boundaries. A smple
iterative method (similar to the Jacobi relaxation method) for obtaining an approximate solution
to the implicit equations at each time step is proposed, which is particularly suitable for long-term
integrations of systems which become slowly varying, and approach an actual or approximate (i.e
secular or transient) steady-state as they respond to slowly varying forcing. Thisis unconditionally
stable and relatively straightforward to implement, but not exactly conservative. It enables much
longer timesteps (up to at least 30 times those constrained by the limits on an explicit scheme) but
involves afew iterations, so that overall reductions of computation time of about one order of
magnitude are achievable in practice. The method is not restricted to quasi-steady conditions but
offers no advantage for transient conditions. It should be particularly useful for long-term
geochemical and palaeoclimate calculations in non eddy-resolving models of moderate or high
gpatia resolution. Its potential advantages and disadvantages are discussed, and some preliminary
results are presented.

1) I ntroduction

Maximum time-steps for conventional explicit numerical methods for solving the advection-
diffusion equations are generally constrained by the Courant-Friedrichs-Levy (CFL) limit and/or
the equivaent diffusive stability limits, which can be very restrictive and thus make long
integrations very costly. Thisis a particularly frustrating problem for systems which are subject to
dowly varying external forcing, and whose solutions thus reach approximate (secular or transient)
equilibrium states. Such situations are common for models of natural geophysical and bio-
geochemical systems, including the ocean-climate system, for which very long integrations
(relative to the system response time) are often required. A particular and well-known problem is
the need to spin-up the large-scale deep ocean circulation and the associated temperature, salinity
and other property distributions, especially under different (past and future) climate conditions.
Whilst most ocean models till use fairly conventional explicit methods (see Kantha and Clayson
2000), a number of special and somewhat ad hoc methods of acceleration have been developed,
generally using split time-scales and/or distorted physics, particularly to address the deep
circulation spin-up problem (Bryan 1984; Killworth, Smith et al. 1984; Danabasoglu, McWilliams
et al. 1996; Klinger 2000), and also to overcome difficulties encountered with free-surfaces



(Griffies and Pacanowski 2001). Similar problems arise in dealing with convection and stability-
dependent diapycnal mixing, and are aso usually solved by special schemes (e.g. Marotzke 1991;
Hallberg 2000). The computational penalty of a stability-limited explicit scheme is however
particularly severe (and fundamentally inappropriate) for systems such as non eddy-resolving
climate models responding to sowly varying forcing, which is the principal focus here.

In addition to the special schemes mentioned above, a number of more general numerical methods
are available which alow for longer timesteps, including semi-Lagrangian methods which address
the advection (CFL-limited) problem (see e.g. Staniforth and Cote 1991; see aso (Leonard, Lock
et a. 1996; Lin and Rood 1996)). Implicit methods (see e.g. Roache 1998), are applicable to
both advection and diffusion limited problems, and are therefore well adapted to the present
problem. Schemes which are both semi-Lagrangian and implicit are well suited to unsteady
problems, but for quasi-steady problems and very large Courant numbers an Eulerian framework
is preferable. Implicit methods generate block-tridiagona systems of simultaneous equations,
which need to be solved by either direct or iterative methods at each timestep (Anderson 1995).
Direct methods require the manipulation of large sparse matrices, and are thus less suitable for the
very large systems which arise with three-dimensional models with even moderate resolution.
Very efficient iterative methods for solving the linear systems arising from multi-dimensiona
PDE's are now available, and among these multi-grid methods (Brandt 1977; Briggs 1987) have
proved to be extremely effective (Roache 1998). The implementation of such methods however
involves substantial complication and effort for complicated geometry, especially with irregular
boundaries (Tong and Tuminaro 1999) and for flow-fields in severa dimensions (i.e. for most
cases of practical interest in geophysical fluid dynamical systems). Other iterative methods which
are more easily applicable in such cases range from the aternating directions implicit (ADI)
method (see e.g. (Ames 1969)) to various conjugate gradient algorithms and the GMRES
method (Saad and Schultz 1986): see also Barrett, Berry et a. (1994), and Saad and van der
Vorst (2000) for an up-to-date review. These methods have been developed to secure very
effective final convergence to an accurate solution after a substantial number of iterations, and of
course they also involve non-trivial implementation and computational costs. These may be
worthwhile if accurate solutions are indeed required, although ssimpler schemes such as SOR can
also be competitive in some circumstances (Woznicki 2001). In the present context there islittle
point in using an elaborate method to find a very accurate solution at each time-step, given that
the system of implicit equationsis itself only an approximation, on account of the substantial
truncation errors due both to limited spatial resolution, and to the use of long time-steps. Speed
and stability arein this situation more important considerations than obtaining a precise solution
to an approximate statement of the problem. It is therefore appropriate and necessary only to
solve the implicit equations approximately at each time-step, and only afew iterations of afairly
simple scheme are affordable if the computational advantage of along time-step is to be realised.

A practical alternative method for the approximate solution of the implicit equations is proposed
here. Thisis avery simple iterative method, which is straightforward to implement even for
complicated geometry in three dimensions. It is robust and unconditionally stable, alowing
timesteps which are limited by truncation errors, but which can be more than one order of
magnitude longer than those for conventional explicit methods, once the advective-diffusive fluxes
have reached approximate balance with the external sources, sinks, and boundary conditions, at an
acceptable and moderate computational cost. It is also quite capable of dealing with transient
conditions such as the early stages of spin-up from initial conditions, and/or the response to
changes of the external forcing terms, but it has a computational penalty (rather than an
advantage) unless and until the solutions become sowly varying, as quasi-equilibrium conditions



are approached. The algorithm is closely related to well-known relaxation methods for steady-
state systems, and is therefore amost certainly computationally sub-optimal, and inferior to the
more advanced methods cited above. It does nevertheless provide a worthwhile computational
advantage for arelatively very modest investment in implementation, and it should be useful for a
wide range of non-eddy-resolving models, such as the ocean component of intermediate
complexity climate models. The structure of the ssimple method proposed also makes it potentially
well-suited for parallelisation for large problems.

2) Derivation of theiterative implicit scheme

A conventional explicit, forward, finite difference scheme for the advection-diffusion equationsin
two dimensions, employing weighted upstream/centred differences for the advection termsis (see
e.g. Roache 1976, 1998)

C:oI - Co = dl (CI - Co) + dr (Cr - Co) +du (Cu - Co) + dd (Cd - Co)
+ 053 [A+w)C + (Iw) C,]-054, [1+w,) C, + (1w,) C,]
+ 0543, [A+w,) C, + (1w,) C,]-054, [1+w,) C, + (1w,) C,]
(1)

where C,' isthe new value of concentration C at the central point, denoted by suffix "o", suffices
[, r, uand d indicate left, right, up and down respectively, al fluxes are evaluated at the cell
interfaces, the "a" coefficients (for advection) are the Courant numbers ubDt/Dx (etc) and the "d"
coefficients (for diffusion) are the diffusion numbers KDt/(Dx)? (etc). | use this somewhat
unconventional mnemonic notation in an attempt to avoid the considerable confusion which can
otherwise arise from the proliferation of subscripts and superscriptsin a multi-dimensional
scheme, which involves various time-levels, successive approximations, and interface values as
well as estimates at intermediate time levels. The upstream/centred weighting coefficients,
denoted by w, which are an important feature of the scheme, are such that sign(w)=sign(a) and
- 1£ w£ +1. For upstream differences w=sign(a), and for centred differences w=0, but a more
general expression is proposed below. The equations are here written for a two-dimensional
system, just as a reasonable compromise between complexity and generality, but may easily be
modified for more or fewer dimensions.

The maximum time-step using such a scheme is normally limited by the Courant-Friedrichs-Levy
(CFL) stability limit, i.e. max{abs(a)} < 1, or the related diffusive limit max{abs(d)} < 1/2ninn
dimensions. These limitations can however be avoided relatively easily by using an implicit
scheme, especially for systems which will reach an approximate and/or transient steady-state (and
thus become dowly varying in time), such as those with relatively rapid interior diffusive and
advective processes, which are expected to reach a secular or transient equilibrium with slowly
varying forcing terms (i.e. boundary conditions, sources and sinks). The method proposed is
therefore not likely to be useful for eddy-resolving models where the magnitude of the transient
terms never becomes small. It is however appropriate for long integrations of geophysical and
biogeochemical systems in which turbulent processes are parameterised, especially those with
moderate to high spatial resolution, for which the conventional stability restrictions become
increasingly restrictive.

To derive an implicit scheme, one replaces al the C values on the RHS by some estimate C* of
future values of the concentration, which are appropriate for determining the advective and



diffusive fluxes during atime-step, such as an average which may involve the values C' at the
next time level, as well as the available (past) values C. Thisleadsto

C:QI = Co = d| (C|*' Co*) + dr (Cr*' Co*) +du (Cu* = Co*) + dd (Cd* = Co*)
+0.5a [(1+W) C* + (1-w) C*] - 0.5 & [(1+w) Co* + (1-w) C*]

+0.5ay, [(1+w) C* + (1-wy) Co*] - 0.5 ag [(1+wy) Co* + (1-w) Cei*]
(2)

A suitable estimate for C* is aweighted average of past and future values, i.e.

C* = aC+bC
(3)

where b=(1-a), and a=1 leads to a fully implicit method, a=0 leads to a conventional explicit
method, and a=0.5 yields a second-order two-level centred "semi-implicit* method, analogous to
the Crank-Nicholson method for diffusion. The resulting simultaneous equations for the values of
C' need to be solved at each timestep. A very simple method for solving these equations can be
constructed, which is effective for the relatively "easy" situation of a slowly varying system
considered here. Thisis obtained by collecting al the terms involving future values of the central
concentration (C,'") only onto the LHS, and is therefore essentially the conventional Jacobi
relaxation method for elliptic and steady-state systems, here applied at each timestep (see e.g.
(Anderson 1995), (Fletcher 1991), (Tannehill, Anderson et a. 1997); note that (Roache 1976;
Roache 1998) refers to this as Richardson's method). This leads to

C, [1+a F] = G, {1-bF} +d C*+d C* +d,C* +dy Cs*

+0.5{(1+w) a C* - (1-w) a, C* + (1+w) a, C,* - (1-wy) ag Cg* }

(4)
where
F=[d+d+d,+dg-05{ (1-w) & - (1+w) a + (1-W,) ay - (1+Wy) aq }]
For a non-divergent flow-field, we always have (a - a + a, - a4) =0, and thus ©
F=d+d+d,+dg+05{wa+wa +wa+waq} -
o8,

This positive quantity, F, is essentialy a volume replacement factor, i.e. roughly the number of
times the contents of any cell would be replaced, by advective and/or diffusive processes, in a
single time-step. This may be considerably larger than one, for long time-steps exceeding the CFL
and diffusive stability limits, which are together broadly equivalent to requiring F<1.

An explicit expression for C,' interms of its values at the previous time-level, and the current
estimates for the adjacent points, is therefore

COI = [Co{l'bF} +dICI*+drCr*+duCu*+ddCd*



+0.5{(1+w) a C* - (1-w) a C* + (1+wy) au C* - (1-wg) ag Cg* }] / [1+a F]
(6)

Note that in equations (4) and (6) the value of the central concentration (C,) which appears on
the RHS isthe old value (that at time level t), whilst al the adjacent values are averages, which
involve both the past values and the current estimates for the future time level (t+Dt), i.e. C',
(etc), viaeguation (3).

Repesated application of equation (6) constitutes the simple iterative implicit method proposed.
For theinitial "predictor" step, one can approximate the future values of the concentrations at
adjacent points by their values at the previous time-level, as in the DuFort-Frankel method for the
diffusion problem ((DuFort and Frankel 1953; Roache 1976)) and ssimply replace al future (C')
values on the RHS, and thus a so the average values C*, with their old values (C).. Thisisonly
likely to be areasonably good approximation in the situation considered here, i.e. where the
concentration field (C), is only evolving slowly, as only in this case will the old and new values be
smilar. A fully implicit initial prediction may also be obtained, if required, by setting a=1, to
obtain afirst approximation which may explicitly be written as

COI:[C0+d|C|+drCr+duCu+ddCd

+05{(1wW)aC-(1w) aC+(1+w)a, Ci- (1w as Cy}] / [1+F]
(7)
However, in practice there actually seems to be no advantage in using a different value of a for
the first approximation, and equation (6) may be used throughout. It should be noted (a) that all
these approximations introduce mixed forward/backward space/time differences on the RHS, and
also (b) that in practice the equations for the initial approximation do not need to be coded
separately, as the code for equation (6) can be used directly, smply setting C'=C on the RHS.

Theinitial approximation so obtained can then be refined by one or more further applications of
equation (6) as an iterative refinement, using any desired value of a, including a=1 (fully
implicit), a=0.5 ("semi-implicit", for second-order accuracy) or some other value (see below).
This constitutes the very ssimple iterative implicit scheme proposed. Its properties, and in
particular the conditions under which the iteration converges are discussed below. The extension
to three (or even more) dimensions is obvious and straightforward.

3) Stability, conservation and other properties

For an iterative scheme such as this to be useful in practice, it is necessary that both (a) the
iterative sequence converges to a unique solution of the equation for each new time-level whichis
being solved, and (b) that this solution for the new time-level have satisfactory propertiesin
respect of stability and convergence (with respect to time-stepping) as well as accuracy and
consistency. If the iterative scheme converges, equation (6) is solved, and the final new result
obtained for each time-level is by definition identical to that which would have been obtained by
any other suitable method for implementing the implicit method, as this solves the same equations.
Any convergent iterative scheme must therefore inherit the same time-stepping and other
properties as conventional direct methods for solving the implicit equations. These properties are
well-known (Anderson 1995; Roache 1998) and are therefore not discussed in detail here. Briefly,



for a>0.5, implicit methods are unconditionally stable for any time-step (i.e. for arbitrarily large
values of the volume replacement factor, F). However, they are not very accurate unless a»0.5
and the time-step is not too large (i.e. F is not too much greater than 1). They also tend to be very
dispersive except under the same conditions. However, for problems of the type considered here,
these properties are adequate, and the restrictions are not serioudly limiting, as discussed further
in section (5), below.

(&  Analysisof the prediction step alone

The iterative convergence of the scheme is discussed in section 3(b), below. However, both the
advantages and disadvantages of the method can be understood more easily (and for the worst
case) by considering repeated time-stepping using the initial approximate prediction step aone
(without any iterative refinement). This helps to establish the context for the method, and is
discussed here first. The simplest fully implicit predictor equation (7) may be re-written

Co=[Co+dC+0dC+d,Ci+dyCy+05{aC-aC+a,Ci-a4Cy}

+0.5{Wia|C|+WrarCr+WuauCu+WdadCd}] /[1+F]
(8)

For a non-divergent flow-field, we always have (a - a + a, - a3) =0, and thus for a constant
concentration field, C=const everywhere, the first termin curly braces{ } onthe RHS of
equation (8) isidentically zero, and we recover C,' = C, , which isanecessary (but not sufficient)
condition for a conservative scheme. In addition, for the specia case of a diffusive-only system
(where al values of a are zero) we obtain

Co=[C+dC+dC+dCy+dyCy]/[1+d+d +d,+ dy]

(9)
Thus, in this case the predicted future values of C are just weighted averages of the central and
adjacent past values, with non-negative weights, which is sufficient for the step to be sign-
preserving, and total variation diminishing (TVD), and therefore unconditionally stable for
arbitrarily large Dt (and thus large values of d, i.e. d >> 0.5). Inthe limit asd ® infinity, the
process actually becomes a simple relaxation iteration, and for finite d is seen to be a successive
under-relaxation scheme. It is therefore to be expected that repeated use of thisinitial step alone
would be rather slowly convergent in time to a steady-state (slower than an SOR method, for
example), but thisis not important, since it retains the explicit connection with time-stepping, and
it therefore allows for coupling with other time-dependent processes (such as those due to
biological, geochemical and other physical processes).

When the advective terms are finite, the analysis is more complex. However, for upstream
differencing, w=sign(a), and we may write a'=abs(a) for all advection into the cell (i.e. with the
convention used here, for a and a, > 0, and a, and a4 < 0), and a'=0 otherwise, we obtain

CoI:[Co"'d|C|+drCr+duCu+ddCd+{a|IC|+a*’ICr+aUIC'J+adICd}]

I[1+d+d+d+ds+{a'+a'+a,/+ad}]
(10)
Sincethea' terms are non-negative (by definition), this aso leads to a weighted average of
previous central and adjacent values, with non-negative weights. For the purely advective case



(with al d terms equal to zero), and for large Dt (and thuslarge a), C,' now reducesto a
weighted average of the upstream values only, as would be expected. The use of upstream
differencing would however lead (as usual) to high spurious numerical diffusion, anditis
preferable to use aweighted upstream/centred scheme with weights dependent on the Peclet
numbers Pe=(a/d) to reduce numerical diffusion (Leith 1965; Roache 1972; Roache 1976;
Fiadeiro and Veronis 1977)

The choice of weighting however also affects the stability of the scheme. To carry out avon
Neumann analysis of the time-stepping stability it is easier to consider just the one-dimensional
case, for which non-divergent flow implies a=a, (=a), and for smplicity we also assume d=d.
(=d). For this one-dimensional case we have

Co=[Co+d(C+C) +05a(C-C)} +05wa(C+C)] /[1+2d+wa]

(11)
Setting C, = C, exp(+i f) and C, = C, exp(-i f ), asusual, and noting that in one dimension
F = (2d + wa), the gain G for asingle time-step, and for phase shift f is
G(f)=C,ICo=[1+Fcos(f) +iasn(f)]/[1+F]
(12)

For stability we require abs(G) £ 1, and thus, for large timesteps, and therefore large values of a,
dand F, thisimpliesabs(a) £ F =(2d + wa).

For the more general case of asingle-step, partially implicit scheme (with O<a<1), it can be
shown in the same way that thegain G' is

Gf)=[1+F{cos(f)-b} +iasn(f)]/[1+aF]

(12a)
and that the requirement that abs(G') £ 1 leads to the same inequality, irrespective of the value of
a. For upstream differences (i.e. w=sign(a) ) thisinequality is satisfied for al Pe, whilst for central
differences (w=0) it isonly satisfied for abs(Pe) < 2. In fact we require w>0 for Pe<2, and w>1-
2/abs(Pe) for Pe>2. It istherefore easily shown that it is also satisfied for al Pe for various other
choices of w, including

w = Pe/ (2 + abs(Pe))
(13)
Thisis a simple approximation to the weighting proposed by (Fiadeiro and Veronis 1977) in order
to eliminate numerical diffusion in the steady-state, and it is asymptotically equal to it for large Pe
(for which the problem is most serious). This choice of upstream/centred weighting thus leads to
an implicit predictor step which has only moderate spurious numerical diffusion, and is stable
(although perhaps only marginally so) for any time-step, and for any Peclet number.

Unfortunately, however, these predictor equations are not normally conservative (N. Edwards,
pers. comm.) unless and until a precise steady-state has been reached, because the fluxesin
opposite directions across each cell boundary are actually computed using different values for the
concentration inside and outside the cell (one future and one past value in one direction, and vice
versain the other). The errors so created cancel for the diffusion-only case, when advection is
zero (see above), but not otherwise. The issue of conservation is discussed further below.



(b) Iteration stability analysis of the full iterative scheme

The time-stepping application of a simple single-step approximation to the implicit method, as
discussed above, would therefore be unsatisfactory despite its attractive stability properties, for
the many applications in which conservation of material properties isimportant. However, if and
when it converges, the full iterative solution of equation (6) is conservative in the limit, since the
fluxes in opposite directions are computed using concentration values which are al evaluated at
the same (intermediate) time-level. Repeated applications of equation (6) may thus be used to
obtain any desired accuracy and degree of conservation, at the expense of additional
computations, provided of course that it converges to the correct solution. Moreover, as
discussed above, the iterative scheme is just another method for the solution of the equations
generated by a conventional implicit method, and thus if the iteration converges, the usual time-
stepping stability and other properties of the implicit method must also apply to the final iterative
solution.

We must therefore consider the stability and convergence of the solution of equation (6) under
simple iteration. Assume that asolution C exists, for the iteration on C' for a new time-level,
and write e for the deviation of any current estimate of C from this final solution,i.ee=C- C.
Then, for the intermediate time level denoted by *, and defining b=(1-a) for brevity as before,

e =C'- C=aC+bC- (aC +bC)=a(C-C) =ae
(14)
Then, using the superscript n (etc) to indicate the time-level where necessary, since C is by

definition a solution of equation (6), we may substitute C for C' in both sides of that equation,
and subtract them from the original to give

egﬂ :|.d|e|* +dre: +05{(1+V\/|)a|e|* - (1_ Wr)are:}J/[1+aF]

(15
since the two termsinvolving C,(1-bF) cancel out. Then, using equation (14),
n+l a n n n n
= + +0.5(1+ - (1- e
€, |1+aF|[d|e| drer 05{( VVl)alel ( Wr)ar r }]
(16)

To evauate the stability and convergence of this iteration, we use a von Neumann analysis and
writeasusua H(f) =e""/e" ,with e, =€"e and e, =€ " e, . Then, remembering that non-
divergent flow in one dimension implies a=a, (=a), and again assuming for smplicity that d=d,
(=d), so that we again also have F=2d+wa, we find

_ a o
H(f )= W[Zd cosf +0.52iasinf +2wacosf }|

. [F cosf +iasinf ]
[L+aF]
(17)
and for stable convergence we require abs{H (f )} £1 for al f .



It should be noted that this condition for stable convergence of the iteration is remarkably closely
related to that derived above, for the time-stepping convergence of the simple single-step

approximate formulation. Indeed, for large time steps, and thus large values of a, d and F (which
is both the worst case and that of interest to us) we recover just the same condition as before, i.e.

abs(a) £ F = (2d +wa)

(18)
for all phase anglest . For moderate F, the iteration gain depends on aF , so that a small value of
a will allow alarger value of F and thus alarger timestep for the same gain, but for very large F
values, we find that a cancels, so that ultimately the iteration convergence is not affected by the
degree of implicitness.

Using the same methods, it can be shown that the time-stepping gain for the fully converged
iterative schemeis

[1- b{F (- cosf)+iasinf}]

[1+a{F(1- cosf ) - iasinf}]

Gl ) =

(19)
which isjust ageneralisation of the usual result for a partially implicit scheme for the advection-
diffusion system. The modulus of this expression approximates to +(1-a)/a for large values of F
and for awiderange of f , so that avalue of a in the upper part of the range 0.5 to 1 would be
desirable for stability. However, for rapid iterative convergence equation (17) indicates that one
should choose a as small as possible, so as to reduce the product aF and thus the value of H. A
compromise between these conflicting requirements implies that a should be somewhere in the
range 0.6 to 0.8, since a value too close to 0.5, which would achieve second-order accuracy, will
provide only marginal time-stepping stability (although this may be adequate).

For apractical choice of a (say, a » 0.6), and atime-step such that F » 10, the iteration
convergence will be moderately slow (H » 6/7 » 0.85), athough this is a respectable rate in the
general context of Jacobi relaxation methods, and the time-stepping will also be only moderately
stable (G" » 0.4/0.6 » 0.7). Thus, for very long time-steps, more iterations will be needed to
achieve adequate convergence (and thus to preserve adequate conservation of material

properties). This could actually destroy any computational advantage of the method, other than its
robustness (i.e. unconditional stability with an appropriate choice of weighting w(Pe)). Based on
practical experience, briefly described in section (4), this problem appears not to be severe, for
reasons which are discussed below. Finaly, it should be noted that any iterative implicit schemeis
likely to be non-conservative, and that this potential problem is not special to this smple scheme.

(©) Time-step selecton

With arobust and stable system such as this, it becomes possible to select the time step according
to criteria other than numerical stability. One may therefore also implement automatic and variable
time-step selection, and allow timesteps to be increased as much as required, as and when a
steady state is approached. In the implementation used for the practical tests described below, the
time-step has been selected primarily in order to approach and maintain a target level for the
maximum change of the concentration of any of the modelled properties across the domain at

each time-step. By monitoring these changes, it is possible to increase (e.g. double) and decrease
(e.g. halve) the time-step progressively, as required.



If thisis done, the method will actually use short time-steps whenever significant transient
adjustment is under way, and will use long timesteps only as steady-state (or transient
equilibrium) conditions are approached. In this way the scheme is actually able to handle transient
situations without difficulty, even though it is not designed for them, and generally has no
significant advantage for them, except in those cases where the stability limits are much more
restrictive than the limits set by the transient evolution. These may arise where diffusion and
advection processes are rapid, but the forcing (including boundary conditions) is such that the
tracer fields are rather uniform. It is notable that it is in these ostensibly "easy" cases that the
computationa penalty imposed by the stability limitsis particularly expensive and frustrating.

Limiting the time-step in this way has the further advantage that it automatically also effectively
limits the temporal truncation errors involved in the integration, provided that the maximum
change per time-step is chosen to be small. A target level of a maximum change (across the
domain) of afew percent of the expected range of each property has been found to be
satisfactory in practice. This also automatically limits the conservation errors, since these arise
only when the concentration field is changing, and are proportional to the magnitude of the
change at any point between adjacent time levels, as discussed in the next section.

In order to limit the distortion of the time-scale which is a general feature of implicit methods, as
discussed below in section (3e), the time-step is however in practice not allowed to increase
without limit as the steady-state is approached. It can capped at a value which limits the volume
replacement factor (F) at alevel which permits worthwhile acceleration of the calculation, whilst
moderating the distortion. Maximum values of F of about 30 have been found to work well in
practice. Limiting the value of F somewhat also serves to prevent excessively slow iteration
convergence, as discussed above.

The same automatic time-step selection method can of course also conveniently be used for the
explicit scheme (obtained by setting a=0), and in this case it may require time-steps smaller than
the stability limit during significant transient evolution, increasing automatically just to the stability
limit as transients decline (because above this limit the instabilities generate unwanted and limiting
changes in the property fields).

(d)  Conservation of material properties

The method proposed is not absolutely conservative, which could be a serious problem for the
modelling of material properties, especially those for which external sources and sinks are small,
so that residence times are long, for example salinity in the ocean. However, it is worth noting
that whilst strict conservation is a desirable property of a numerical scheme, it is not essential.
Indeed, since any numerical calculation can only achieve conservation to machine precision, it is
never achievable in practice. For any problem there must be some acceptable level of non-
conservation, athough this may be quite difficult to determine in practice. Since non-conservation
effectively generates spurious sources and sinks, this acceptable level will be greater when the true
sources and sinks of the properties are large, compared with the magnitude of the interior
diffusive and advective fluxes (whose combined divergence they must balance in the steady-state),
and vice versa.

However, we may note that the non-conservation arises only (a) when advection is important

(since the scheme is conservative for diffusion only), and (b) the property distribution is non-
uniform, and evolving (sinceit is due to the difference between the concentration field at adjacent
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points at successive time-levels), and (c) when the iterative sequence isimperfectly converged. It
may therefore be reduced by various means, including limiting the change in the concentration
fields (as discussed above), choosing parameters which permit rapid iterative convergence, and
performing enough iterations per timestep. Constructing a suitable measure of non-conservation,
and determining a practical limit for it, and therefore determining the necessary number of
iterations, requires further work. For the present | can report only that satisfactory results, as
judged by comparison with use of the explicit scheme, seem to be obtained with afew (two to
four) iterations per time-step. Given that for large F, as required for long time-steps, convergence
may become rather slow, with abs (H) > 0.7, thisis at first sight rather surprising. The effects of
limiting the time-step (and thus F) during transients, and also choosing a rather close to 0.5, to
provide both a more accurate scheme and to improve the convergence rate by reducing the
product aF, all serve to ameliorate the problem.

However, for any real problem in more than one dimension, the advective field is non-uniform.
The regions of high F are therefore specia and likely to be somewhat localised (and thisis of
course aso true if the diffusion coefficients are spatially variable). The problems of sow
convergence and non-conservation are therefore likely to be also localised in the same regions,
which are actually those where rapid diffusive and advective processes tend to homogenise the
gpatial distribution. It therefore seems possible that some sort of de facto cancellation occurs,
such that where the problem is potentially large, adequate convergence suppresses it, whereas
where convergence is poor, the problem is not too large anyway. For the moment however this
remains mainly speculation.

(e Time-scale distortion

A further potential disadvantage of this and other implicit schemesis distortion of the time-scale,
which is a manifestation of temporal truncation errors, and arises because in a given (and
nominally long) time-step, the scheme actually only moves as much material as would an exact
scheme with a shorter time-step. Thus, although the integration appears to have been carried out
for avery long time, the results actually correspond to redlity for some lesser time. The diffusive
and advective processes in effect proceed too slowly, and the labels on the time axis are
optimistic. This problem is a general feature of implicit methods, and iterative approximations to
them, including the DuFort-Frankel method of which this method is an extension (see (Roache
1976), p63 for a good discussion of this phenomenon). The problem is quite fundamental, since it
is precisely these reduced fluxes of material which confer the desirable stability properties of such
schemes. Conversely, it should be noted that explicit schemes generally move too much material
(because they do not adjust the fluxes to or from any cell for the changing concentrationsin
adjacent cdlls, within asingle time-step, whilst implicit schemes over-compensate). It is this which
causes explicit methods to over-shoot, producing firstly infeasible negative concentrations, and
eventually actua instability. These features can easily be understood by considering the smple
case of radioactive decay in a zero-dimensional (box) model. This shows that the fully implicit
method generates only hyperbolic rather than exponential approach to an equilibrium in asingle
time-step. The analysis of this smple system also easily confirms that the semi-implicit schemeis
second-order accurate for infinitesimal time-steps, and has good accuracy up to normalised time-
steps (I Dt) of about 1.5. However for longer finite time-steps, values of a which are larger than
0.5 give superior accuracy. Indeed for larger normalised timesteps (analogous to large values of F
in the diffusive/advective system), progressively larger values of a [actually a » | Dt /(1+ | Dt)]
yield better accuracy. One might therefore wish to use (say) a»0.9 for F of the order of 10, but
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such alarge value would degrade the iteration convergence, and a compromise is needed. Since
this problem primarily arisesin those regions where F is large, so that fluxes (and the imbalance
thereof) tend to be large and things change fast, it seemsto be preferable overall to use avalue of
a closer to 0.5, to maintain iteration convergence and conservation, and accept that rapid changes
(transients) are not modelled very accurately, but proceed somewhat too slowly. Since the
method is not primarily intended for model situations where transients are of the essence, thisisa
lesser price to pay. Finally, one should note that in those regions where values of F are not so
large, the rate at which the processes proceed, and the transients evolve, is modelled more
accurately. Infact, where FEL, they are modelled at least as accurately, (but with error of the
opposite sign), as for an explicit scheme.

4) Results of initial numerical tests

Preliminary tests with atwo-dimensional implementation of the scheme, and with steady (fixed)
flow-fields have demonstrated extremely good stability, using sequentia time-step doubling as a
steady-state tracer field is approached, based on a target maximum property change (of afew %
of the full natural range of possible values) per time-step. The modelling of dynamically active
propertiesis discussed below. Stability isindeed maintained even with Courant numbers (and/or
diffusion numbers) of 100 or more in places, but in practiceit is preferable to limit the time-step
so that the maximum V olume Replacement Factor (F) is not more than about 30, to avoid
excessive distortion of the time-scale, as discussed above.

The results have invariably been found to be indistinguishable from those of the equivalent
explicit scheme for the same problems, run close to the stability limit, for both fully and partialy
implicit calculations. Using 3 or 4 iterations per time-step, the method has still been found to
permit cpu time reductions of afactor of 10 or so, even where it is necessary to model atime-
consuming "spin-up” transient (for which this method offers no advantage other than robustness,
and where it incurs significant costs due to the iterations at each time-step). This arises because
with automatic time-step selection the scheme tends to spend roughly the same cpu time
computing the transient phase, with short time-steps, as it does computing the later more gradual
approach to the steady-state, with much longer time-steps than the explicit method. The
advantage would thus be greater when modelling systems for which any such transient phaseis
absent, or of short duration compared with the total integration time required.

Typical results for the classic "spira” passive tracer problem with a steady specified flow, using
a=0.5 and a bi-quadratic stream-function, areillustrated in Figure 1. These are indistinguishable
from those for the fully implicit version, and also from those of the equivalent standard explicit
scheme (not shown) The latter required a time-step 20 times smaller, and took 10 times longer to
integrate for the same modelled period of time. For this calculation the explicit diffusion
coefficient was set to avery small value, so the calculation isfor avery large nominal Peclet
number. In practice the weighting scheme effectively leads to upstream differencing in this
situation, and thus to an effective cell Peclet number of 2 (so the Peclet number based on the
model domain is 256).

Typical results for a problem with an active tracer (and thus a non-steady flow) are given in
Figures 2 and 3, for the natural convection due to buoyancy caused by variations of temperature
in aroom with hot and cold walls. These results are a so indistinguishable from the equivalent
semi-implicit and explicit computations, but did not achieve such alarge cpu-time advantage,
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because the time-step was in this case limited in practice by an incipient instability. This has been
observed in severa problems when the Peclet number is large, but only with dynamically active
tracers.

Further investigation has shown that this instability isin fact a finite amplitude computational
mode (typically of wave-number 2 per unit cell dimension, i.e. checker-boarding, at the Nyquist
limit) involving an interaction (over-compensation) between the evolution of the active tracer and
the dynamics (i.e. the computed flow). It arises because of the sequential (rather than
simultaneous) solution of the equations for the tracer field evolution, and the consequential flow
field, which is used in this and indeed in most other methods for geophysical fluid dynamical
problems. The mode, which only appears for long time-steps, and thus at high levels of F, which
areinaccessible to an explicit method, is aform of process-splitting instability. | have found that it
can usually be successfully suppressed by (possibly severe) ad hoc under-relaxation (see e.g.
Anderson, 1995) of the computed flow at each time-step, at least for the buoyancy/frictional-
geostrophic dynamics (Edwards, Willmott et al. 1998) used here, where the fluid has no inertial
mass or viscosity (which may be sufficient to suppressit in other types of model).

Further numerical tests (not illustrated) have been carried out using the same 2D implementation,
set up to represent the thermohaline circulation in an ocean basin, with similar results. It isagain
generally possible to achieve about one order of magnitude acceleration of the calculation,
compared with the conventional explicit method, yielding results for the steady-state which are
indistinguishable. The acceleration achievable is limited in practice either by the time-scale
distortion of the transient phase, which exhibits the same qualitative features, whilst evolving
somewhat too slowly, or by the process-splitting instability described above.

In addition to these two-dimensional calculations, the method has &l so been successfully
implemented and used in one-dimensional calculations (James Annan, pers comm) and in athree-
dimensional model (Neil Edwards, pers comm), alowing substantial (order of magnitude) savings
of cpu-timein both cases. In the three-dimensional case under-relaxation was a so necessary to
suppress a computational mode (very likely of the same type as discussed above).

5) Discussion & Conclusions

The numerical scheme proposed here provides a reasonably effective and practicable solution to
one of the most serious and long-standing limitations to the very long integrations of advective-
diffusive systems, which are subject to sowly varying forcing, in an efficient and relatively easily
implemented way. It is particularly well suited to the long-term modelling of biogeochemical
processes in fluid systems (including box models, for which the equations given can easily be
adapted). An efficient method for such long integrations using moderately well-resolved modelsin
2 or 3 dimensions will be extremely helpful for the development of intermediate complexity
models of oceanic and atmospheric processes in Earth System Models for climate studies.

However, thereis of course "no free lunch”, and the method has a number of potential
disadvantages, including inaccurate modelling of transients, imperfect conservation of material
properties, and distortion of the time-scale of the modelled results. This sounds like afairly
serious list of problems, but as discussed all of them can be ameliorated substantially, and they do
not present serious problems to the successful use of the method within its domain of
applicability. The inaccuracy of transients is not a problem as long as one only uses long time-
steps as and when a steady-state is approached, for example as suggested here by choosing the
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time-step so asto limit the maximum change in the concentration fields. If thisis done the
magnitudes of the inaccuracy and of non-conservation become small, and only afew iterations
(smilar to corrector steps) are required to reduce the imperfections to an acceptable level.
Moreover, the non-conservation errors may not be too serious in practice, since these arise mainly
in regions where diffusion and advection are rapid, and tracer concentrations tend to be
homogenised. Indeed, for the accurate computation of a quasi-steady tracer field we actually
really need the most accurate computations where these processes are slow, thus permitting large
concentration gradients to evolve, since it is these which create the main features of the
concentration field. It should be noted incidentally that some of the other acceleration methods
mentioned in the introduction also cause some degree of non-conservation.

A further possible problem is that the number of iterations (N) needed at each time-step to achieve
adequate conservation increases at high levels of the volume replacement factor, and eventually
becomes proportional to it, thus potentially negating any computational advantage. However, the
constant of proportionality depends on the magnitude of abs(H) required, and provided thisis not
too small, say not less than 0.7, and a»0.5, then N<0.2F, and no more than 4 iterations are
required even for F as high as 20. This conjecture is supported by the simulations conducted so
far, but further investigation of this point would be desirable. Even if this does prove to be a
significant problem, there seems to be no reason why the iteration number should not be varied
across the domain, so that more iterations are only applied where necessary, thus making the
punishment fit the crime, and avoiding any unnecessary computational burden.

The final complication isthat, in common with other implicit methods, care must be taken to use
an implicit treatment of the boundary conditions wherever necessary, lest these generate
instabilities which have been suppressed in the interior. This has not so far been found to be a
problem for Dirichlet boundary conditions, and should be straightforward for von Neumann and
mixed boundary conditions too. Radioactive decay, and other transformations such as those due
to chemical reactions, should also be treated implicitly, so far as possible.

The method is a'so suitable for modelling convective adjustment processes without requiring
specia coding for them, since it handles very high diffusivities without difficulty, and wherever
significant up-welling or down-welling develops it automatically tends towards an upstream
replacement agorithm. Whilst presumably it would be somewhat |ess effective than special
algorithms for this process (Marotzke 1991), it should be competitive with a straightforward
implicit treatment, and it has the advantage over these methods that no specia provision needsto
be made for invoking it. It could also presumably be used for the vorticity transport equationsin
both viscid and inviscid systems (and with a minor modification could even be used as a Poisson
equation solver for stream-function calculations), thus conceivably allowing the same acceleration
technique to be applied to the solution of the dynamical equations.

It should be noted that the method inherently involves multiple steps (for each time increment),
and that while pure upstream differencing is permitted by the stability criteria, its use has not been
advocated here because of the high resultant numerical diffusion. The use of weighted upstream
differencing serves to reduce numerical diffusion to some extent. However, it would be interesting
to determine whether this iterative method could actually be combined with schemes such as the
MPDATA method (Smolarkiewicz and Margolini 1998) which aso involve upstream
differencing, but use a multi-step algorithm to suppress numerical diffusion very effectively, thus
allowing accurate calculations even for very high Peclet numbers.
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Whilst the method is not intended or designed for seriously unsteady systems (such as those with
strong time-dependent forcing), it is actually able to handle transients without particular
difficulties, by using the time-step limitation method described. It seems possible that in some
circumstances its robustness might also permit it to be used with advantage, even in such transient
situations. Although the accuracy is potentially reduced by non-conservation and timescale
distortion, these are unlikely to be serious while the timesteps are small, such that F <1. With a
fixed number of several iterations per time-step there would be a computational penalty in such
circumstances, but if the number of iterations was made variable, so that multiple iterations were
only used where and when necessary, this could be overcome. The scheme could then permit
Courant (and/or diffusion) numbers to exceed unity in some restricted regions, and thus allow
calculations with (say) an average volume replacement factor of the order of one, rather than
requiring the maximum volume replacement factor to be always less than one. This would be at
the expense of higher truncation and conservation errorsin these limited regions. Practical
experience, as described above, for simulations which de facto involve an unsteady (spin-up)
phase, suggests that thisis possible. Whether this would be of any practical utility in extreme
cases, such as eddy-resolving models, is not clear.

The issue of non-conservation has been addressed above, but the trestment is as yet incomplete.
Furthermore, the consistency and dispersion properties of the scheme have not been considered in
any detail, asit is assumed that these would be approximately the same as for conventional
implicit methods, provided the iteration scheme is adequately converged. In fact, because the
iterative scheme can propagate a disturbance only over N grid-points per time-step, rather than
over the whole domain asin anormal implicit scheme, it is possible that it could be somewhat less
dispersive which may be an incidental advantage. Although suitable choices have been suggested
for the various parameters (a, N, w, Frnax, maximum fractional change per time-step) which
control the precise behaviour of the scheme, these are not critically important, and no serious
attempt has been made to optimise these. Further work on the optimisation of the scheme, on the
time-scale distortion incurred, and also particularly on the evauation of the levels of non-
conservation which occur, and the acceptability of them, would therefore be desirable. The
iterative method used is essentially Jacobi relaxation, which is generally owly convergent, and it
istherefore very likely that other more effective iteration methods would further improve the
performance. Some form of conjugate gradient method or even the GMRES algorithm (see
(Barrett, Berry et a. 1994; Saad and van der Vorst 2000)) should be very suitable, although it is
not certain that the trade-off between cost and effectiveness would be favourable. A simpler
alternative would of course be just to use Gauss-Seidel relaxation or SOR, although this has not
yet been tried. This could exacerbate the non-conservation problem, and would make the method
less suitable for parallelisation, although use of ared-black variant (see e.g. (Briggs 1987)) would
avert this disadvantage.

The smple iterative implicit method proposed should be a useful addition to the geophysical fluid
modelling tool-kit, enabling worthwile acceleration of computations in suitable situations for very
moderate implementation effort . An important feature is the use of some upstream weighting of
the advection terms which ensures iterative convergence and stability, even for cell Peclet
numbers much greater than 2, and also serves to reduce spurious numerical diffusion. The scheme
is much faster than an explicit scheme run near its stability limit, and aso much more robust, and
in some circumstances it might even be worth using it for this reason alone. With appropriate
design, it can be coded as a simple aternative to an explicit scheme (involving only the re-setting
of afew parameters, and the execution of afew extralines of alternative code), so that it is
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possibleto useit, and aso to easily check the results against the explicit method, as and when
required. Unlike (say) a quasi-Lagrangian, multigrid or ADI method, it involves essentialy the
same computational structures and sequences as an explicit method, and in some cases (depending
on existing program design) it may therefore be possible to implement it as afairly
straightforward modification of an existing explicit implementation. A numerical scheme such as
this can of course be used in addition to the special methods for dealing with fast time scalesin
ocean models discussed in the introduction, if appropriate. It should be useful for a wide range of
non-eddy-resolving models, especially those used as components of intermediate complexity
climate models, and also for example for the accelerated spin-up of the large-scale deep ocean
circulation and property distributions in conventional General Circulation Models (with eddies
temporarily suppressed), under different (e.g. past and future) climate conditions.
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Figure 1 : Resultsfor aclassical steady flow diffusive-advective "spira" problem, using the
iterative implicit scheme with a=0.5, afixed flow-field derived from a bi-quadratic stream-
function (of arbitrary magnitude), and minimal explicit diffusion, on a 128 x 128 grid. Dirichlet
boundary conditions are imposed at the upper ("cold") and lower ("hot") boundaries, (but thereis
no convection because the flow-field is fixed). The maximum Courant number attained is about
13. The minimal explicit diffusion implies a very large nominal Peclet number, so the weighting
tends to upstream differencing in thislimit. This introduces numerical diffusion, so the effective
cell Peclet number is reduced to about 2. The results therefore correspond to a solution for a
finite domain Peclet number of about 256 (2N for an N x N domain).
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Figure 2 : Results (final temperature distribution) for a dynamical calculation of a natural
convection problem, using the iterative implicit scheme and a=1. The flow is determined by
buoyancy (with alinear equation of state) and Rayleigh friction only, and the explicit diffusivity is
minimal both horizontally and vertically. The boundary conditions are Dirichlet, with a hot |eft-
hand wall (+30C) and a cold right-hand wall (-30C). The grid is 32 x 32, so the effective domain
Peclet number (see caption to Figure 1) is about 64.
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Figure 3 : Contours of the calculated steady-state stream-function (arbitrary units) computed for
the natural convection problem of Figure 2, showing the very strong velocities which develop
near the vertical boundaries, and weak interior flow. Results which are in all essential respects
identical are also obtained using the corresponding explicit scheme, and a=0.5and a=0.75.

20



