Intermediate Complexity Climate Models

Lecture 8
From 2D (meridional-vertical) models to coarse resolution "GCMs"

EMICs : Earth (Climate) System Models (of intermediate complexity)

- ♦ What are they ?
- ♦ Where are we now?
 - · Examples
 - Overview
- ♦ Issues for debate...
 - · Timescales, Structure & Purpose
 - · Processes & Components
 - · Dimensionality & Resolution
 - · "Complexity"
- ♦ Where are we going?

Model types

- ♦ Conceptual/illustrative
 - · to build & test general understanding
 - · e.g. simplified box models
- ♦ experimental
 - · to test mechanisms, evaluate processes, etc
 - to model general (not specific) system behaviour
- ♦ explanatory
 - to explain past events
 - (fitted to some data, tested on the rest)
- ♦ simulation & prediction
 - · as realistic as necessary/possible
 - for "operational" use
- ♦ N.B. The model is a working hypothesis

· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

MIT Climate Modelling Initiative

Table 1. Heirarchy of Models

1D Radiative-Convective Equilibrium Model

1D Radiative Convective Equilibrium Model with interactive hydrological cycle

2D Coupled Atmosphere-Ocean Box Models (Hemispheric and inter-hemispheric

MIT 2D Land-Ocean Climate Model

Coupled 1D Atmosphere, 3D Ocean Model

Coupled 2D Atmosphere, 3D Ocean Model

3D Atmospheric Model with simplified physics/low resolution coupled to 3D Ocean Model

Proposed new State-of-the-Art 3D Coupled Atmosphere/ Ocean General Circulation Model

Examples of ESM's (not all EMICS!)

- ♦ Hadley Centre (HADCM3)
 - moderate resolution, 3D at 3.75° (atm) by 1.25° (ocean)
- ♦ MPI Hamburg (ECHAM/LSG)
 - 3D at 5.6°/5.6°
- ♦ Potsdam (CLIMBER-2)
 - 2.5D at 10° (lat) by 52° (long)
- ♦ Genie
 - 3D at 5° (lat) by 10° (long)

CLIMBER-2

Ganopolski et al, Climate Dynamics (2000)

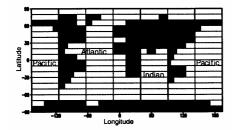
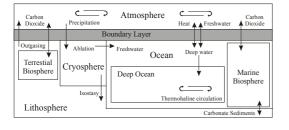
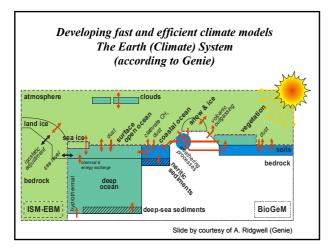


Fig. 1 Representation of the Earth's geography in the model. Dashed lines show atmospheric grid, solid lines separate ocean basins


"Lego-box" model layout (Edwards & Shepherd 2001)


Figure 1: Diagram of the model domain, ocean cells are shaded dark grey. See

Reasons for wanting intermediate complexity (2D, 2.5D & 3D) models

- ♦ augment RCM's to allow for spatial variation
 - include meridional transport of heat, water, etc \dots
- ♦ augment EBM's to treat radiation (etc) explicitly
 - include vertical transports of heat, water, etc...
- ♦ need to represent both latitude & altitude
 - transport both by MMC and turbulence (eddies)
 - (MMC = mean meridional circulation)
- ♦ also : heat & water transport by ocean
 - primarily due to meridional circulation
- ◆ Representation of continents & land surface...
 - The zonal dimension is also important!

What is an ESM?

Components of an ESM (for the Climate System)

- ♦ Oceans
- ♦ Atmosphere
- ♦ Continents (configuration)
- ♦ Land and sea surfaces (albedo)
- ♦ Biosphere : marine and terrestrial vegetation
- ♦ Cryosphere : ice sheets and sea-ice

			•	stem Mo & Times			
		PIO	cesses a	& Times	cares		
Time-scale (years)	Planetary	Continents	Land	Sea	Atmosphere	Ice	Biosphere
Billions	Solar evolution	Formation & Accretion	Erosion & deposition	Formation & Evolution	Formation & Oxygenation	Snowball Glaciations ??	Origin of Life, "Mostly bacteria"
~1e8		Continental Drift	Colonisation by plants	Basin formation		Mostly warm & ice-free	Plants & animals
~1e7		Volcanic episodes	Mountain building	Sediment accumulation		Episodic Glaciations	Mass extinctions
Millions		Crustal weathering		Chemistry (calcium)		Polar ice- caps	Species extinctions
~1e5	Insolation (Eccentricity)			Sea-level changes		Glacial cycles	
~1e4	(Obliquity & precession)			Chemistry (phosphate)		Last glacial to Holocene	
Thousands	Solar Variations ?			Thermo-haline circulation	Millennial (DO) Oscillations		Eco-system evolution
~100	ditto				Abrupt Climate Changes		
~10	ditto			O-A Coupled Modes?	Decadal Modes?		
~1						Sea-ice variability	

-			

Essential Processes

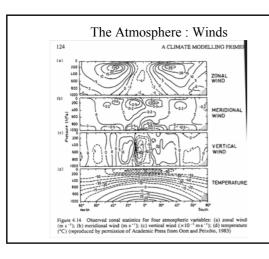
- ♦ Radiation (absorption, reflection, emission...)
- ♦ Convection (atmospheric and oceanic overturning)
- ♦ Oceanic transport (heat, salt, water, nutrients...)
- ◆ Atmospheric transport (heat, water, CO₂,)
- ♦ Hydrology (evaporation, precipitation, run-off...)
- ♦ Ice: accumulation, ablation, transport
 - (on both land & sea)
- ♦ Biological production, geochemistry, carbon cycle
 - (land & sea)
- ♦ Soils & Sediments
 - (land & sea)

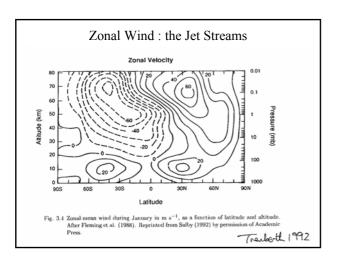
Existing EMICS

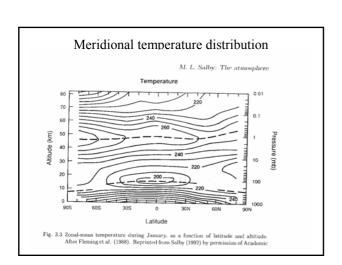
Information from M. Claussen (PIK) et al

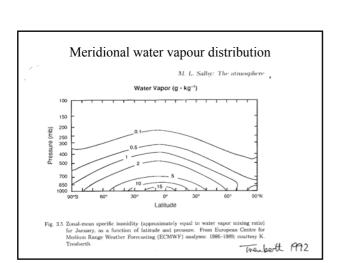
Model	Institute	Dimension		Total "Cells"		M/C	CPU
		Ocean	Atmos	Ocean	Atmos	type	(hours
							per kyr)
Bern 2.5D	Univ. of Bern	2.5	1	504	17	WS	0.05
CLIMBER-2	PIK	2.5	2.5	4320	252	WS	2
ECBilt-2	KNMI	3	2.5	38912	6144	SG(2)	336
CLIO-E-V	Louvain	3	2.5	144000	6144	WS	300
RAS	IAP Moscow	2.5	3	7200	19200	WS	125
MPM	McGill Univ	2.5	1.5	648	216	WS	8
IGSM	MIT	3	2	60750	216	ws	200
MoBidiC	Louvain	2.5	1.5	1620	72	WS	3
PUMA-LSG	MPI Hamburg	3	3	28512	10240	Cray	24
ESCM	U. Victoria (BC)	3	2	190000	~10000	SP2	240
HADCM3	Hadley Centre	3	3	262656	87552	Cray	10000
FORTE	SOC/Reading	3	3	60750	45056	WS/PC	~1000
C-GOLDSTEIN	SOC/Univ.Bern	3	2	10368	1296	W/S	~ 1
!!T4!!	OFFILE (IIIO			11664	6490	WC	1
"Target"	GENIE (UK)	3	3	11664	6480	WS	

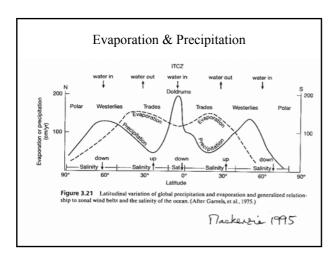
Nature of intermediate complexity models

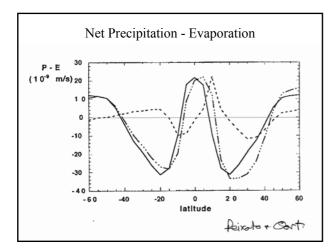

- ♦ are invariably (a) Coarse, & (b) Statistical-Dynamical
 - include explicit dynamics (buoyancy, friction, etc...) for the mean flow only
 - · do not resolve eddies: treated statistically
 - · but include fluxes due to eddy correlations
 - which need to be parameterised (turbulence closure)
- involve parameterisation of eddy fluxes
 - Usually use mixing length & flux-gradient methods
 - diffusivities (etc) K = U*L, $flux = K \times gradient$
 - U* = characteristic **amplitude scale** for velocity
 - L = characteristic **spatial scale** of velocity fluctuations (or of the spatial domain)


-	
-	


2 and 3D Atmospheric Models

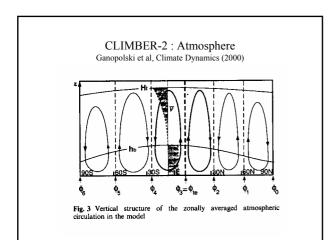

- ♦ Involve meridional-vertical transports due to
 - radiative forcing (NB: surface albedo, clouds...)
 - · interaction with the land & ocean
 - · by radiation, heating and freshwater fluxes, & winds
 - · buoyancy forces (moist convection)
 - · friction
 - as Rayleigh drag or eddy viscosity (momentum transport)
 - mixing (lateral & vertical)
 - · needs to be very carefully parameterised
 - rotation (which is very important)
- ♦ Examples of 2D models include...
 - Goddard Institute (GISS) (Hansen, Stone....)
 - Lawrence Livermore (MacCracken et al)

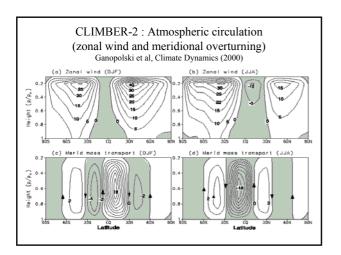

The Atmosphere: Winds Jet shream Troposphere Troposphe

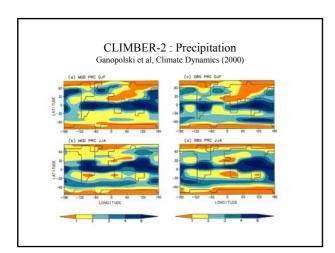


Meridional processes in the Atmosphere

- ♦ Primary balance is between
 - buoyancy forcing (convection), and friction...
- ◆ Major features of the meridional circulation (existence and extent of Hadley & Ferrel cells) can be obtained from
 - transport of zonal (angular, total) momentum
 - · by both the mean circulation, and by eddies
 - the thermal wind equation (buoyancy forcing)
- ♦ See review by MacCracken & Ghan (1988)
- ◆ Eddy transport of momentum is very important (especially in mid-latitudes : the storm tracks)

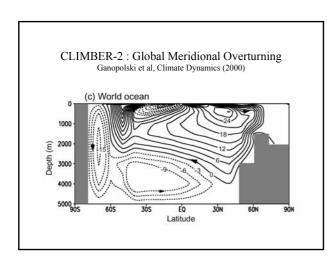

Eddies (and eddy correlations) ♦ are due to Baroclinic Instability • see Stone (1997): [Venice lecture notes] ♦ lead to eddy viscosity, diffusivity (etc) · (Austausch coefficients) ♦ but cause transport of momentum **up** the gradient of **relative** angular momentum \Rightarrow a problem! • "negative viscosity" (Starr, 1968) ◆ Can use parameterisations due to Green(1970) and Branscome (1980,1983) • see Stone & Yao, J Atmos Sci, 44, 3769- 3786, 1987 · based on conservation of potential temperature and potential vorticity Mixing Lengths & Eddy Diffusivities parameterisation of Stone & Yao (1990) $\langle v'\theta' \rangle = 0.6 \frac{gd^2N}{\theta f^2} \exp(-z/D) \frac{d\theta}{dy} \left(\frac{d\theta}{dy} \right)$ where $d = H/(1+\gamma)$ and $\gamma = \beta H/\alpha f$ • Flux is proportional to (gradient)ⁿ · Altitude-dependent · Stability-dependent

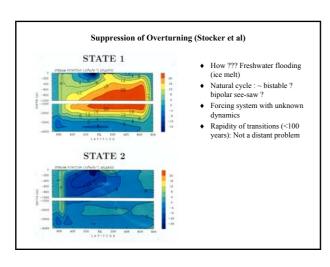

Processes included in Statistical-Dynamical atmospheric models

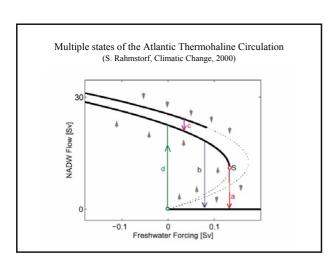

- ♦ Heat fluxes
 - Sensible (dry) & Latent (moist)
- ♦ Moisture fluxes (moving freshwater)
 - Evaporation & Precipitation : E-P
- ♦ Momentum fluxes (zonal winds)
- ♦ Radiation
 - transmission, absorption, albedo, clouds (explicit)....
- ♦ Buoyancy & convection
 - · leading to mean meridional circulation

What about Clouds?

- ♦ At several (maybe all) levels
- ♦ Must allow for fractional cloud cover
 - · to allow for zonal variations
 - · and avoid "blinking" instabilities
- usually parameterised in terms of RH
 - · as in many GCM's
 - · incorporating type vs. altitude correlation
 - but one could model liquid water explicitly...

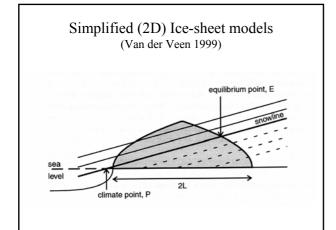


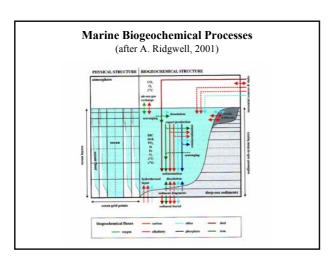

2 and 2.5D Ocean Models


Involve meridional & vertical transports due to

- surface forcing (interaction with the atmosphere)
 - by radiation, heating and freshwater fluxes (and winds ?)
- and thus buoyancy forces
- balancing friction
 - · as Rayleigh drag or eddy viscosity
- mixing (lateral & diapycnal): usually specified
- and effects of rotation (maybe, somehow)
- ♦ Examples include...
 - · Stocker & Wright
 - · Marotzke et al

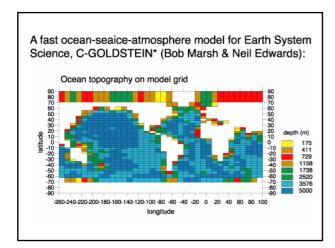
2.5D Ocean models (Stocker, Wright & Mysak 1992) SAKAI AND PELTIER: GLOBAL THERMOHALINE CIRCULATION MODEL TIME = 669.0 [yr] SOUTHERN PACIFIC ATLANTIC INDIAN Streamfunction[Sv]

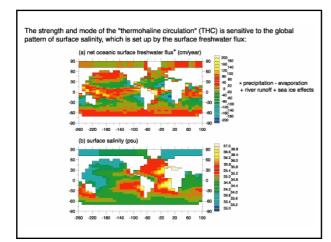


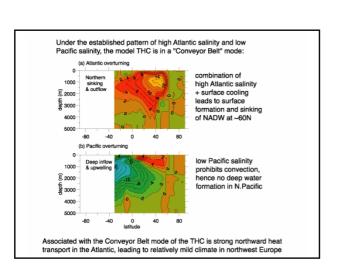


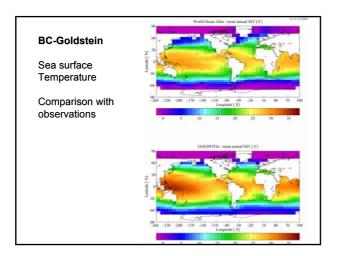
Land Surface Schemes

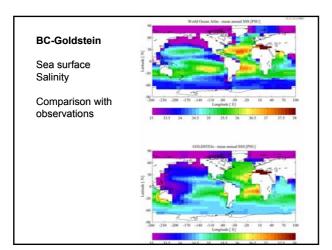
- ♦ Topography
 - elevation & slope
- ♦ Hydrology
 - · soil moisture, runoff
 - · drainage basins
- ♦ Vegetation
 - Carbon cycling
 - albedo...
- ♦ Ice sheets & glaciers

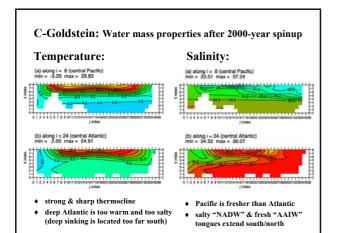


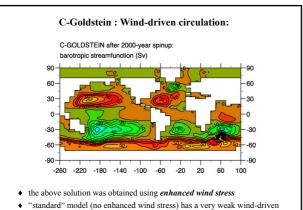


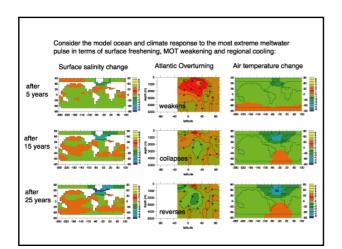


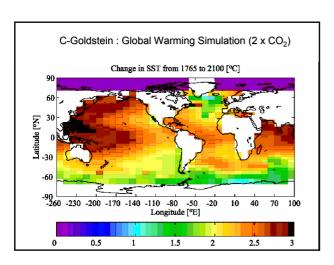

Why build yet another model? ♦ We need Fast & Efficient climate models To do long runs (over many centuries, up to and beyond 2100) N.B.: 5,000 year time horizon for exhaustion of fossil fuels and equilibration with marine sediments To do many runs (to evaluate sensitivity & uncertainty requires thousands of simulations) To serve as the climate module for an Integrated Assessment Model · (requires both of the above): many realisations Any climate model needs the Greenhouse Effect • $\Delta CO_2 \Rightarrow \Delta T$: Climate Sensitivity To predict from emissions one needs a carbon cycle model (terrestrial and marine) • Emissions => ΔCO_2 : (c.f. 1/3:1/3:1/3) ♦ We need to allow for surprises... • E.g. thermohaline shut-down Efficient 3D ocean models ♦ MPI Hamburg (LSG) · partly implicit numerical scheme · neglects acceleration terms ◆ Frictional (planetary) geostrophic models · solve equations for slow dynamics only · neglect acceleration & inertia, include (Rayleigh) friction · the "thermocline equations" in realistic geometry • Winton & Sarachik (JPO, 1993) · Goldstein (Edwards et al, 1998) · Edwards & Shepherd (the "Lego-box" model) · Climate Dynamics, 2001 • 1 million years overnight (18 x 18, low resolution) **C-GOLDSTEIN Version 1:** Standard configuration • realistic world geometry on a 36x36 horizontal grid • (~5° latitude x 10° longitude) ♦ basic 4-catchment runoff scheme

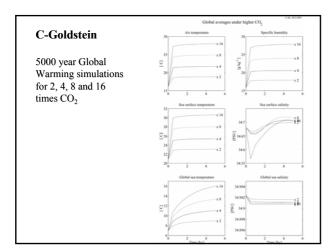

- smoothed ocean topography (8 ocean depth levels spanning 5000m)
- ♦ asynchronous coupled 2D EMBM atmosphere
 - · one ocean time-step (of typically 3.5 days) every 5 atmospheric transport time-steps
- mixture of explicit (ocean, sea-ice) and implicit (atmosphere) timesteps
- ♦ Isopycnal oceanic mixing scheme
- ♦ 2000 years spinup in 1 to 2 hours on fast PC/workstation



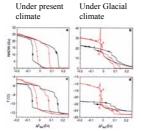




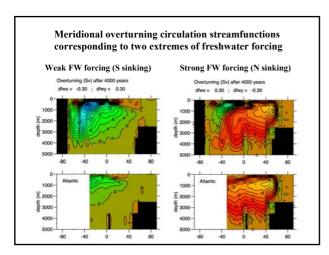


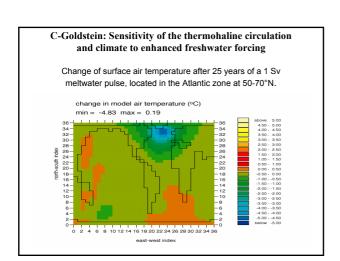


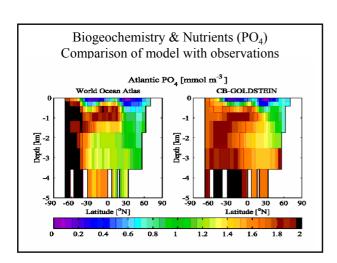
circulation due to the strong drag coefficient needed with real topography



Multiple THC equilibria: Background


- Paleodata suggest at least three stable equilibria of the THC (and Atlantic climate) in the recent past: Holocene; Heinrich; Glacial
- Evidence that the THC "jumps" between such equilibria is found in "hysteresis loops" of THC strength vs. forcing - obtained in "slow" climate models by slowly varying an anomalous freshwater flux over selected regions of the North Atlantic


CLIMBER-2 hysteresis loops:



black = anomalous flux applied 50-70° red = anomalous flux applied 20-50°N (from Ganopolski & Rahmstorf 2001)

Using Condor pools to investigate equilibrium Atlantic overturning rate in dfwx-dfwy space C-GOLDSTEIN v1: max Pac MOT (Sv) after 4000 yr Results of 31x31 Condor pool expt (GENIE test) 961 runs (3,844,000 model years!) - courtesy M. Gulamali (Imperial), R. Marsh (SOC) took ~3 days, resolving at dfwx, dfwy intervals of just 0.02 Sv 0.3 Two states of THC are apparent: 0.2 ON (towards bottom right corner), OFF (towards top left corner) 0.1 • Present day overturning (at dfwx = 0, dfwy = 0) lies not far from the 0.0 -0.0 "cliff" between these states! -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 dfwx (Sv) (Atlantic wetter) (Atlantic drier)

BC-Goldstein Air-sea pCO2 differences modelled using phosphate depleting "biology" Comparison with observations

Variability & Predictability

- ◆ The Earth's Climate System apparently exhibits Multiple quasi-stable states
 - · presumably due to positive feedbacks
- ♦ and Quasi-periodic behaviour
 - · damped natural modes, paced by external forcing?
- ♦ On all time scales (?) from seasons to aeons
- ♦ We need efficient ESM's
 - · to explore parameter-space
 - to run decent-sized **ensembles**, to establish variability, and the extent of predictability
 - for proper interpretation of palaeo-climate proxies
- ♦ We need a diverse spectrum of efficient models, also to allow for inter-comparison & replication

Where next? We need to...

- ♦ Play !!
 - · to allow for accidental discoveries
 - · this requires over-night runs (at most)
- ◆ run ensembles and/or explore parameter space
 - · this needs hundreds to thousands of runs
- ♦ extend integration times to >30 kyr
 - · with moderate resolution models
- : develop faster schemes (with longer time-steps)
- "populate the spectrum" of models
 - in both structure & in resolution
 - inter-compare (up/down the spectrum)
- promote scalability and modularity
- ♦ develop new & better parameterisations...

	•		
1			
		_	
1			
	•		

Parameterisation

- ♦ is a high order intellectual activity
- ◆ requires "asymptotic credibility"
- ◆ preferably based on "sound science"
- ♦ we could/should
 - · "cascade" parameterisations up/down the spectrum
 - use statistical representations of sub-grid scale distributions
 - · work with percentile values within cells
 - for hydrology, topography, clouds, ice, vegetation...

Conclusions

- ♦ Earth System Models of Intermediate Complexity
 - · are necessary, desirable, and very useful tools
 - · complementary to, and not "second best" to GCM's
 - are the **only** option (for the next decade or so)...
 - for testing our (seriously incomplete) understanding of natural variations of climate
 - because these occur mainly on palaeo (multi-millennial and longer) time-scales
 - EMIC's are still at an early stage of development, and are certainly capable of major improvement
 - We need more efficient representations of fluid processes, and more effective parameterisations
- Eventually, we need to use data assimilation, and inverse modelling methods, on palaeo-datasets...

Modelling & Philosophy

- ♦ "Science may be described as the art of oversimplification: the art of discerning what we may with advantage omit."
 - Karl Popper, "The Open Universe", Hutchinson, London (1982)

_	