Climate Dynamics (7) Palaeoclimatology & Ice Ages

John Shepherd

School of Ocean & Earth Science Southampton Oceanography Centre University of Southampton

Biogeochemistry & Climate Useful References

- ♦ Books (used as source of many illustrations)
 - Kump, Kasting & Crane (1999) "The Earth System"
 - Skinner & Porter (1995) "The Blue Planet : An Introduction to Earth System Science"
 - Crowley & North (1991) "Palaeoclimatology"
 - Broecker (1974) "Chemical Oceanography"
 - Butcher, Charlson, Orians & Wolfe (eds) (1992) "Global Biogeochemical Cycles"
 - Imbrie & Imbrie (1979) "Ice Ages : Solving the Mystery"
- ♦ Proto-book (source of much inspiration)
 - Broecker (1995) "The Glacial World According to Wally"

History

- ♦ Observations in the Alps & Scotland
 - Agassiz, Buckland, Lyell et al...
 - Gunz, Mindel, Riss & Wurm...
- ♦ The astronomical theory
 - Adhemar, Croll, Milankovitch (1910-1940)
 - ... and also Wegener!
- ♦ Low-latitude (equatorial?) glaciation

Major Ice Ages (NB: Northern Hemisphere bias ...)

♦ Huronian 2700 to 2300 Myr BP (??)

♦ Late Precambrian 900 to 600 Myr BP (?)

♦ Ordovician-Silurian ca 450 Myr BP

♦ Permo-Carboniferous 300 to 270 Myr BP

♦ Pliocene/Pleistocene last 10 Myr (approx)

Past Climate: the Evidence

- ♦ Rocks : Classical Geology (to ~4 Gyr BP)
 - Nature & type (sedimentary, composition, etc)
 - Contents (fossils, plant & animal distributions)
 - Morphology (landforms, moraines, scratching & polishing...)
- ♦ Deep Sea Sediments (to ~100 Myr BP)
 - · especially foraminifera
- ♦ Ice cores (to ~400 kyr BP (Antarctic))
 - composition of ice, gas bubbles, dust, etc
- ♦ Lake Sediments & Palaeosols (episodic & patchy)
- ◆ Tree rings (last few kyr only)

Oxygen Isotopes as proxies for climate

- $\bullet \delta^{18}O = 1000 \times \{[^{18}O]/[^{16}O]/[^{18}O]/[^{16}O]_{ref}^{-1}\}$
 - isotopes are fractionated by **evaporation** (light isotope evaporates preferentially leaving ¹⁸O behind)
 - meteoric waters (source of all fresh water including ice) are depleted in ¹⁸O, and so is precipitation...
 - effect is progressive and dependent on latitude and temperature
 - deep ocean δ^{18} O (benthic forams) indicates ice volume
 - · and thus indirectly is a proxy for global temperature
 - surface ocean $\delta^{18}O$ (planktonic forams) indicates salinity and surface temperature
 - but the **transfer function** is complicated (& not unique)
- δ^{18} O can be measured in ice, trapped air, calcite, etc...

Other stable isotope ratios used as climate proxies

- ♦ Deuterium (heavy isotope of hydrogen) : δD : fractionated by evaporation & precipitation
 - indicator of evap/precip & temperature (of rainfall)
- Carbon : δ^{13} C : fractionated during photosynthesis
 - indicator of biological production
- Nitrogen : δ¹⁵N : fractionated by nitrogen fixation
 & denitrification
 - indicator of new biological production
- ♦ also phosphorous, silicon, boron...
- ♦ Need to know processes & transfer functions....

Possible Long-term Causes of Episodes of Glaciation ...

- ◆ Solar radiation variations (including but not limited to orbital effects)
- ♦ Continental configurations & plate tectonics
 - land/sea albedo, ice accumulation, ocean circulation
- ♦ Carbon Dioxide variations and GH effects
 - Volcanic activity versus biogeochemistry
- ♦ Ice sheet growth & instability
- ♦ Oceanic & Atmospheric Circulations (modes & rates)
- ♦ NB: Amplification by positive feedbacks
 - · ice-albedo feedback
 - water-vapour greenhouse effect

Linear & Non-linear System Dynamics

- ♦ Positive feedbacks
 - multiple alternative states (separated by **repellors**)
 - hysteresis & rapid transitions (switching)
- ♦ Negative feedbacks
 - if instantaneous : stabilisation, stable states (attractors)
 - if delayed : resonance (amplification) & possibly oscillations (at characteristic frequencies)
- ♦ Oscillations : if **total** loop gain > +1
- ♦ Reservoir effects : finite response times
 - (N.B. relation to residence times)
- ♦ Relaxation oscillations : due to positive feedbacks
 - rapid switching between alternative **transient** states
 - reservoir effects lead to typical saw-tooth character

Ice-Age Characteristics

- ♦ Presence/Absence (as function of geological time)
- ◆ Low latitude extent? (land & sea ice edges)
- ◆ Polar ice accumulation : in either or both Northern and Southern hemispheres?
- ♦ Variability : may be considerable
 - stability & periodicity may also vary
- ♦ Sea-level changes? (due to land-based ice only)
- ◆ Inceptions & Terminations (are usually/invariably fast ???)
- ♦ Ice sheets destroy evidence of their predecessors...
- ... So detailed analysis is possible for recent glaciations only

Pliocene-Pleistocene glaciations

- ♦ Antarctic glaciers etc since ~25 Myr BP
 - due to separation from Australia and S. America??
- ♦ N. Hemisphere ice-sheets since ~ 5 Myr BP only
 - due to closure of Panama ???
- ♦ Notably & strongly periodic
 - mainly at period of 40 kyr (obliquity) up to 800 kyr BP
 - mainly at period of 100 kyr (eccentricity) since then...
 - ... Milankovitch, but why this resonance (???)
- ♦ Terminations occur very fast
 - main temperature changes in a few decades
- ♦ Inceptions are apparently not so fast

Primary mechanisms for recent glacial/interglacial oscillations

- ◆ The existence & persistence of the **extreme states** is relatively easy to understand...
- ◆ The triggers for, and mechanisms of, the rapid **transitions** are much more difficult to explain...
- ♦ There is still no generally accepted mechanism...
- ♦ Candidates include :-
 - Ice sheet dynamics & instability (with isostatic effects) {Peltier, Denton et al}
 - Solar (orbital) forcing and CO₂ interactions {Berger}
 - Salinity/Ice/Sea-level relaxation oscillations {Shaffer}
- ◆ NB : All modified and/or amplified by variations of oceanic & atmospheric circulations, ice-albedo feedback and the water-vapour greenhouse effect, etc (ad libitum)

Problems

- ♦ G/IG change of global mean temperature is ~ 5 C
- ♦ Orbital insolation changes are too small
 - less than a few W/m² on average...
 - seasonal maxima/minima are bigger: enough??
- ◆ Climate sensitivity to CO₂ is too small
 - ~ 2 C per doubling/halving
 - are the changes cause or effect?
 - and what are they caused by, anyway?
- ♦ Ice albedo effects are only effective at high latitudes (and already included in sensitivities)
- ♦ What is the sequence of events & feedbacks?
- ♦ Especially, what triggers inceptions/terminations?

Possible Sequence of Events: Inception

- ♦ Reduced Summer Insolation
- ◆ Snow/Ice Accumulation (with albedo F/B)
- ♦ Cooler & Drier
- ◆ Reduced hydrological cycle & precipitation (?)
- ♦ Inc'd Pole-Equ ΔT... Ice-cap Growth
- ♦ Inc'd Wind & Storms Reduced Sea-level
- ♦ Inc'd Dust & Fe Supply Inc'd Phosphate
- ♦ Increased Biological Production (and cooler)
- ◆ Reduced atmospheric CO2
- ♦ Cooling....

Possible Sequence of Events: Termination

- ◆ Increased Summer/Winter insolation (?)
- ♦ Snow/ice melting (with albedo F/B)
- ♦ Reduced Pole-Equ ΔT... Ice-cap retreat
- ◆ Reduced Wind & Storms Increased Sea-level
- ♦ Increased hydrological cycle (?)
- ◆ Increased (or relocated ?) precipitation : Wetter
- ♦ Reduced Dust (and Biological Production)
- ◆ Reduced Atmospheric Albedo & Increased CO₂
- ♦ Warming...

Other factors to be included...

- ♦ Hydrological cycle & global freshwater fluxes
 - Evaporation and precipitation (alteration and/or relocation of maxima)
 - Atmospheric circulation changes?
 - Lapse rates, water vapour feedback (?)
- ♦ Ocean thermohaline circulation
 - Alternative Modes ?
 - Bipolar warming/cooling?
 - Asymmetry between hemispheres?
- ♦ Other effects of sea-level ? Salinity ?
- ♦ Calcite formation/dissolution : effects on CO₂
- ♦ Ice-sheet dynamics ...

Abrupt Climate Change (decadal to millennial time-scales)

- ♦ Millennial scale oscillations
 - including Mediaeval Warm Period & the Little Ice Age
 - these may involve sea-ice variations (Bond et al 1999)
- ♦ Events such Younger Dryas (at ~ 11.5 kyr BP)
 - sudden sharp cooling: lasted ~ 1kyr in total
 - interrupted the last termination (Bolling-Allerod warming at ~ 14 kyr BP)
- ♦ Also the 8.3 kyr BP cold event
- ♦ Transitions occur in decades ...
- ♦ Events may last up to ~ 1 millennium

Ice Ages: Conclusions

- ♦ Causes and mechanisms are still very uncertain
- ♦ Recent ice ages have been strongly periodic
 - almost certainly "paced" by orbital insolation changes
- ♦ Possibly involve CO₂ changes (biologically driven?)
- ♦ ... and re-organisations of the hydrological cycle?
- ♦ Interactions of the ice/ocean/atmosphere system may still be found to be sufficient ...
- ♦ Biogeochemistry may only matter for times > 1 Myr
- ♦ The role of the oceans remains **very** uncertain
- ♦ Warm periods (e.g. Cretaceous) are equally well worth study!