Climate Dynamics (6) The biogeochemistry of CO₂ and Climate

John Shepherd

School of Ocean & Earth Science Southampton Oceanography Centre University of Southampton

CO₂ as a biogeochemical

- ♦ CO_2 (i.e. $\Sigma CO_2 = DIC$) is a non-limiting plant nutrient, utilised in photosynthesis (~10%)
 - N.B. DIC = CO₂(aqu) + bicarbonate + carbonate
- ◆ In the ocean, the stoichiometry (P:N:C:O) is defined by the **Redfield ratios**
- ◆ CO₂ in the atmosphere (partial pressure, i.e. pCO₂) is in long-term equilibrium with CO₂ in the ocean
 - but N.B. unsteady in short term : there is a strong seasonal cycle (in anti-phase between N & S hemispheres)
- ♦ How does CO₂ draw-down by biological production in the ocean affect atmospheric CO₂?

Factors affecting CO₂ speciation

- ♦ Biological production and respiration
- ♦ Acidity (pH, hydrogen ion concentration)
- ◆ CaCO₃ precipitation and dissolution
 - Solubility product $SP=[Ca] \times [CO_3]$
- ♦ Balance/imbalance between DIC and Alkalinity
- ♦ N.B. Residence time of Ca (w.r.t. river input & carbonate deposition) is ~ 1 Myr
- ◆ but precipitation and dissolution (modified by circulation and mixing) cause local variations of [Ca] of the order of 1%, i.e. 200 uM/kg
 - causes variation of alkalinity (~ analogous to salinity)

Basic chemistry of CO₂ and water

$$CO_2 + H_2O$$
 gaseous

 \uparrow [Henry's Law]

 H_2CO_3 carbonic acid (acid)

 \uparrow
 $H^+ + HCO_3^-$ bicarbonate (neutral)

 \uparrow
 $2H^+ + CO_3^{2-}$ carbonate (alkaline)

Alkalinity

Alkalinity = \sum strong positive ions - \sum strong negative ions = - Acidity {which is not much used, and not the same as pH, or even [H⁺] } N.B. weak ions(including H⁺ and OH⁻) are excluded...

e.g. 0.1M solution of NaOHin water \Rightarrow Alk = [Na $^+$] = +0.1M e.g. 0.1M solution of HCl in water \Rightarrow Alk = -[Cl $^-$] = -0.1M {Acidity=0.1M, pH = 1.0} e.g. 0.1M solution of NaCl in water \Rightarrow Alk = [Na $^+$]-[Cl $^-$] = 0 {neutral}

N.B. "strong positiveions" includes Ca 2+, which is variable and the main determinant of alkalinity in seawater

But since charge balance requires...

$$\sum strong \ positive ions + \sum weak \ positive ions - \sum strong \ negative ions - \sum weak \ negative ions = 0$$

Alkalinity =
$$\sum$$
 weak negative ions - \sum weak positive ions
= $[OH^{-}] + [HCO_{3}^{-}] + 2[CO_{3}^{2-}] - [H^{+}]$ etc...

This sum of weak ionic concentrations is therefore fixed (set) by $[Na^+] + [K^+] + 2[Ca^{2+}] - [Cl^-] - 2[So_4^{-2-}]...$

Alkalinity and Total CO₂

in practice the important ions are usually $\rm H^{\scriptscriptstyle +}$, $\rm OH^{\scriptscriptstyle -}$, $\rm HCO_3^{\scriptscriptstyle -1}$, and $\rm CO_3^{\scriptscriptstyle -2}$

∴ Alkalinity =
$$[OH^{-}] + [HCO_{3}^{-}] + 2[CO_{3}^{2}] - [H^{+}]$$

≈ $[HCO_{3}^{-}] + 2[CO_{3}^{2}]$
≈ 2400 ì M/kg

$$Total \, CO2 = \sum CO2 = DIC = \begin{tabular}{c} [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{-2}] \\ 1\% & 95\% & 4\% \\ \approx 2300 \, i \ M/kg \end{tabular}$$

Practical Carbonate System Calculations

Any two CO_2 system quantities are sufficient to determine all the others Alk and DIC are usually measured, and so are used most commonly $\{pCO_2, pH, and [CO_3^{2-}] \text{ are usually derived from them } \}$

for example...

Alk
$$\approx [HCO_3^-] + 2[CO_3^{2-}]$$

DIC $\approx [HCO_3^-] + [CO_3^{2-}]$
 $\therefore [CO_3^{2-}] \approx Alk - DIC \approx 2400 - 2300 \approx 100$ î M/kg

andso, also, $[HCO_3^-] \approx 2 DIC - Alk \approx 2200$ î M/kg

Moreover, since $H_2O + CO_2 + CO_3^{2-} \leftrightarrow 2 HCO_3^-$, {const = K}

pCO2 = $[CO2]/\acute{a} = [HCO3^-]^2/\acute{a} K [CO_3^{2-}]$

Calcium Carbonate formation at low CO₂ level (alkaline, high pH)

```
from from rocks volcanoes

CaO + 2H_2O + CO_2
\updownarrow
Ca(OH)_2 + H_2CO_3
\updownarrow
Ca^{++} + HCO3^- + OH^- + H_2O
\updownarrow
Ca^{++} + CO3^{2^-} + 2H_2O
\updownarrow
CaCO_3 + 2H_2O
to sediments
```

Calcium Carbonate dissolution at high CO₂ level (acidic, low pH)

Calcium Carbonate & the CO₂ system

- ♦ Calcite/aragonite precipation (by plankton)
 - decreases DIC by 1 unit, alkalinity by 2 units
 - on average (!) plankton use 1 Ca per 3 C atoms
 - (coccolithophores & forams, but not diatoms!)
- ◆ Calcite/aragonite dissolution (essentially inorganic, but accelerated by bacterial respiration creating acidic micro-environments?)
 - vice versa, i.e. +1 DIC : +2 Alk
 - occurs (partially) below lysocline
 - fully below CCD (calcite compensation depth)
- ◆ N.B. solubility product of CaCO₃ increases markedly with pressure (and therefore depth)

Overall effects

- ♦ Primary production (in surface waters)
 - decreases DIC by ~ 200 uM/kg and alkalinity by ~ 150 uM/kg
 - and thus decreases pCO₂ (from 1000 ppm to 250 ppm)
- ◆ Respiration (in sub-surface waters)
 - increases DIC (but not alkalinity)
 - causing large increase in pCO₂ (and decrease of pH)
- ♦ Calcite dissolution (in deep waters only)
 - · increases both DIC and alkalinity
 - causing small decrease in pCO₂ (and increase of pH)
- ◆ Doubling primary production (e.g. by increased upwelling of nutrients) could halve surface pCO₂ (to ca 150 ppm)

Other interesting issues

- ♦ Possible feedback on temperature
- ◆ Effects of altered primary production during glaciations (and/or atmospheric CO₂ from volcanoes) on lysocline depths (etc)
 - NB there are longer term effects too, because of altered burial of carbonates (affects both DIC and Ca conc'ns)
- ◆ Effects of CO₂ injection (sequestration) in deep water
 - will increase carbonate dissolution and decrease burial...