Climate Dynamics

Simple Climate Models

John Shepherd School of Ocean & Earth Science Southampton Oceanography Centre

Overview: 4 Lectures

- ♦ 1) Basic facts and findings
 - The global energy balance
 - Zero-dimensional EBM's
- ♦ 2) Introducing latitudinal effects
 - 1D (meridional) EBM's
 - ice/albedo feedback
- ♦ 3) Introducing vertical effects (in the atmosphere)
 - 1D radiative-convective models
- ♦ 4) 2D (meridional & vertical) models
 - statistical-dynamical models
 - the atmosphere
 - the ocean
 - and land ???

Acknowledgements & materials

- ♦ Developed from MIT course of Peter Stone
 - see Stone (1997)
 - similar content, different presentation
- ♦ Material (and many illustrations) from
 - McGuffie & Henderson-Sellers "A Climate Modelling Primer" (2nd edition, 1996): £29-95 paperback
 - Trenberth (1992) "Climate System Modelling"
 - Kump, Kasting & Crane (1999) "The Earth System"

Simple Climate Models

Lecture 1
Basic facts and findings
The global energy balance
Zero-dimensional EBM's

The Climate System

- ♦ Ocean
- ♦ Atmosphere
- ♦ Cryosphere (both land and sea-ice)
- ♦ Hydrosphere (Evaporation, precipitation, groundwater, rivers...)
- ♦ Biosphere (both terrestrial & marine)
- ◆ Geosphere : tectonics (continental configuration), volcanic dust & CO2
- ♦ ... and the *interactions* between them

Simple Models

- ♦ "Simple" means one or more of ...
- ♦ low dimensional
 - zero, one, two, three (?)
 - low order, i.e. coarse resolution
 - up to (say) $\sim 30 \times 30 \times 30 \dots$
 - low complexity
 - use parameterisation rather than detailed simulation of complex processes....

(a higher-order intellectual activity!)

Simple Models: Types

- ♦ Energy Balance Models
 - · may be zero, one or two dimensional
 - model the land/sea surface and its interactions with the rest of the Universe
 - do not really model the atmosphere...
- ◆ Radiative-Convective Models (atmosphere)
 - usually 1D (vertical):
 - point-wise or global average ?
- ♦ Box models (many variants thereof)
- ♦ Meridional/vertical models (2D)
 - "statistical-dynamical"
 - atmosphere and/or ocean

The Global Energy Balance

- ♦ At the top of the atmosphere (TOA)...
 - Earth receives incoming Short-wave (UV/Visible) radiation
 - some is reflected (albedo)
 - Earth emits Outgoing Long-wave (thermal infra-red) Radiation (OLWR)
 - · Black-body radiation
 - at the effective TOA temperature (T_{eff})
 - NB : atmospheric lapse rates... $T_{\text{eff}}\!<\!T_{\text{s}}$
- ♦ OLWR from surface
 - is perturbed by atmospheric IR absorption & re-emission (the greenhouse effect)

Incoming Short-wave Radiation

- Solar Constant : $S_0 = \sim 1360 \text{ W m}^{-2}$
- Projected Area of Earth = πR^2
- Surface Area of Earth = $4 \pi R^2$
- ♦ ∴ Global average insolation $S_{bar} = S_0 / 4 = 340 \text{ W m}^{-2}$
- \blacklozenge at the equator, $\boldsymbol{S}_{equ} = \boldsymbol{S}_0 \, / \, \pi = 433 \ W \ m^{\text{-}2}$
- varies roughly as $cos(\theta)$
 - but NB effect of obliquity
 - at the poles, if obliquity were zero, S would be zero, and it would be very cold indeed

Climate Forcing

- ◆ "climate forcings" are usually expressed as (vertical) heat fluxes (in W m⁻²)
- for $2xCO_2$, $G_{CO2} \approx 4 \text{ W m}^{-2}$
- for clouds, $C_{net} \approx 0 \pm 20 \text{ W m}^{-2}$
- ◆ NB vertical divergences (gradients) of forcing fluxes yield heating rates (e.g. in K per day)
 - if these are non-zero, we have imbalance, and thus non steadystates (or there must be other transports not yet accounted for)

Albedo

- \bullet Albedo (α) = SW reflectivity
 - Water <0.1
 - Vegetation 0.1 to 0.2
 - Bare Land 0.2 to 0.3
 - Clouds ~0.5
 - Ice & snow 0.5 to 0.9
- ♦ Planetary average ~0.3
 - mostly due to clouds (2/3)
 - and snow/ice (1/3)

Outgoing Long-wave Radiation (OLWR)

- ♦ Stefan-Boltzmann law : $F = \sigma T^4$
 - $\sigma = 5.67 \text{ E}(-8) \text{ W m}^{-2} \text{ K}^{-4}$
 - ⇒ dominant (negative) **feedback**
- ♦ but : IR absorption/emission by the atmosphere
 - transmissivity(= emissivity) $\varepsilon \approx 0.6$
- causes GH effect : mainly due to water vapour
 - T_s - $T_{eff} \approx 33$ °C (or "g" =40%)
- ◆ but vapour pressure increases with temperature & thus transmissivity decreases (⇒ positive feedback)
 - NB: Clausius-Clapeyron relationship
 - $q_s = q_0 \exp(-5420/T)$

Estimation of OLWR

- ♦ Empirical
 - Budyko (1969): linear relationship
 - Sellers (1969) : non-linear relationship
 - from satellites (ERBE etc)
- **♦** Theoretical
 - 1D radiative convective models
 - Pierrehumbert (1995)
 - Hartmann & Michelson (1993)
- ♦ Should be somewhat non-linear...
- ♦ Still not very well established (± 20 W m⁻²)

Budyko's Linear Approximation

- ♦ $F \approx 204 + 2.17 \text{ T}_{s}$ (W m⁻²⁾
 - (NB : ∃ various values for the constants)
- ♦ this implies a Climate Sensitivity (with no ice-albedo feedback) of $\lambda = 1/2.17 = 0.46$ K per W m⁻²
- ♦ whereas, for a pure Stefan-Boltzmann black body, $λ ≈ 0.3 \text{ K per W m}^{-2}$
- ♦ the difference is due to the water vapour greenhouse effect (positive feedback)

Energy Balance Models

- ♦ Budyko (1969), Sellers (1969)
- ♦ see also North (1975), North et al (1981)
- ♦ Simplest case : zero-dimensional models
 - apply to globally averaged conditions
 - surprisingly successful & useful
 - (if carefully parameterised...)
 - because OLWR is well approximated by a linear function of T_s
 - so OLWR is not dependent on spatial distribution of heat (temperature)

Globally Averaged EBM

- ◆ For global energy balance :
- (1- α) $S_{bar} = \epsilon \sigma T_s^4$ (Stefan-Boltzmann)
 - where transmissivity $\varepsilon \approx 0.6$
 - albedo $\alpha \approx 0.3$
 - $S_{bar} = 340 \text{ W m}^{-2}$
- : $T_s = \{(1-\alpha) S_{bar}/(\epsilon \sigma)\}^{0.25} 273.2$
- ♦ alternatively....
- $(1-\alpha)$ S_{bar} = $F \approx 204 + 2.17$ T_s (Budyko)
- : $T_s = \{(1-\alpha) S_{bar} 204\} / 2.17$

Global mean temperatures

- ♦ For Budyko' parameterisation, with
 - albedo $\alpha \approx 0.3$
 - $S_{bar} = 340 \text{ W m}^{-2}$
- ♦ (and also for S-B with transmissivity $\varepsilon \approx 0.6$)
- \bullet T_s ≈ 16 °C
- For albedo $> \approx 0.4$, T_s (Budyko) < 0 °C
 - (: ice everywhere ...)
- \bullet T_s (Budyko) varies more than T_s (S-B)
 - due to water-vapour GH effect (+ve feedback)

Ice/albedo feedback

- for $T_s > \sim -10$ °C, $\alpha \approx 0.3$
- for $T_s < \sim -10$ °C, $\alpha \approx 0.7$
- ♦ approximate by step or logistic function
- ♦ may have multiple stable states
- ♦ possibility of "Snowball Earth"
 - occurred twice ???
 - Huronian and late pre-Cambrian glaciations
 - at circa 2000 and 700 Ma BP

Runaway humid greenhouse?

- OLWR has max (capped) at $\approx 320 \text{ W m}^{-2}$
- ♦ and at the equator...
- ♦ (1- α) $S_{bar} \approx 0.7 \text{ x } 433 = 303 \text{ W m}^{-2}$
- lacktriangle if S increases, or α decreases, could get runaway humid greenhouse effect
- ♦ the tropics are close to this state, now
- would continue until all ocean water has boiled (vapour pressure ≈ 400 bar, $T_s \approx 635$ K, 362 °C...)
- ♦ has probably occurred on Venus
- ♦ likely for Earth in 1000 Ma (see Kasting 1988)

Sketch for logistic model

IR Saturation and the GH Effect

- ◆ If atmosphere is virtually opaque (absorption due to water vapour) why does a bit more absorption due to CO₂ matter?
- \blacklozenge $T_s = \{(1$ $\alpha)$ $S_{bar}/(\epsilon \; \sigma)\}^{0.25}$ 273.2
- but $\varepsilon = \exp(-\tau)$, where $\tau = \text{optical thickness}$
 - (proportional to concentration of absorbing substances)
 - $\therefore \Delta T_s \propto \exp(\tau/4)$: increases without limit...
- ♦ NB : continuous (layered) radiative equilibrium calculation ⇒ ε = 2/(τ+1) (?2?)
 - Salby, ML, pp88-94 in Trenberth (1992)

Effects of high & low clouds

Forcing the system (Climate sensitivities)

• Values of λ (K per W m⁻²⁾

black body+ water vapour (g-h effect)0.300.46

- + ice-albedo feedback ???
- ♦ Doubling CO2 \Rightarrow forcing $\approx +4 \text{ W m}^{-2}$
 - $\Rightarrow \Delta T \approx 2.5 \,^{\circ}\text{C}$
- ♦ Ice introduces non-linearity
 - occurs only near the poles
 - must consider spatial variation
 - ⇒ need at least a 1D (meridional) model...