Climate Dynamics (5) Biogeochemistry and Climate

John Shepherd

School of Ocean & Earth Science Southampton Oceanography Centre University of Southampton

Biogeochemistry & Climate: Overview

- ♦ The importance (for climate & habitability) of
 - biological processes (life, death, photosynthesis...)
 - geological processes (vulcanism, sedimentation...)
 - chemical processes (nutrients, CO₂, carbonates...)
 - the intimate link between water & life
- ♦ The role of the oceans
 - as an active biogeochemical reactor
 - the biggest one on the planet!
 - part of the system controlling atmospheric CO₂
 - the location for about 50% of photosynthetic production
 - the site of the major sinks for carbon (organic & inorganic)

A Brief History of Earth Climate

- ◆ The Archaean (up to < 2.5 Gyr BP) seems to have been mostly warm or hot (???) despite the faint young sun (30% less insolation at 4.5 Gyr BP)
- ◆ There is evidence for low-latitude (global ???) glaciation at ~2.5 Gyr BP (the Huronian glaciation), and also in the late Precambrian (at ~ 800 Myr BP)
- ◆ Since then (i.e. during the Phanerozoic), warm periods (e.g. the Devonian, Cretaceous) have been punctuated by major glaciations (e.g. Permo-Carboniferous, at ca 290 Myr BP)
- ◆ The warm periods may be initiated by increased CO₂ due to major episodes of vulcanism (e.g. at end of Permian)...
- ...and are (somewhat) associated with major deposition of carbonate rocks, and thus (perhaps) with high but reducing atmospheric CO₂ levels ...
- ◆ ...until low CO₂ causes (triggers ?) another glaciation (???)

Venus, Earth & Mars

- ♦ Venus is too hot (460 C)
 - thick atmosphere (90 atmos): mostly CO₂
- ♦ Mars is too cold (-53 C)
 - thin atmosphere (0.006 atmos): also mostly CO₂
- ◆ Earth is just right (15C) [for liquid water, & life]
 - its atmosphere is mostly Nitrogen & Oxygen
 - Extraordinary : far from thermodynamic equilibrium
 - the result of planetary engineering (geophysiology)
 - by **plants**, which remove CO₂ & replace by Oxygen

Liquid water on Earth

- ♦ Banded Iron deposits
 - are sedimentary rocks
- ◆ provide evidence for existence of liquid water at the surface from very earliest times (3.8 GyrBP)
 - (c.f. age of Earth ~ 4.5 GyrBP)
 - [NB: much iron implies oxygen was absent]
- ♦ Water on Mars?
 - Subsurface, frozen
- ♦ Water on the Moon ???

Evidence for Life on Earth

- ♦ Fossil Bacteria in (e.g.) Gun-flint chert
 - from 3.5 GyrBP (maybe earlier)
- ♦ Nothing but bacteria for ~ 3 Gyr
 - [NB : bacteria are single-celled prokaryotes]
- ♦ About 3 GyrBP, Cyanobacteria evolved
 - [cyanobacteria = "blue-green algae"]
- ♦ the earliest photosynthesisers ??
 - [proper (eukaryotic) plants arose much later]
- ♦ [NB : Possibility of ancient life on Mars???
 - Disputed evidence for very peculiar small bacteria]

Reducing & replacing atmospheric CO₂

- ◆ The advent of Photosynthesis is **the** crucial event in planetary engineering ...
- ◆ Evolved very early (3 Gybp ?)
- ♦ Affects atmospheric composition
 - and thus climate (through radiative effects)
 - because water vapour & CO₂ are the major GH gases
- ♦ Removes CO₂, and produces Oxygen
 - which may be vital to the retention of water
 - (preventing radiolysis, and escape of hydrogen)
 - and is necessary for multi-cellular life...

Photosynthesis

- ♦ uses solar energy
- ♦ uses (and reduces) atmospheric Carbon Dioxide
- ♦ produces Oxygen (a waste product)
- ♦ produces Organic Matter ...
 - e.g. carbohydrates (CH₂O)_n (approx)
- ♦ But the whole cycle is reversed by respiration...
- ♦ Leads to seasonal cycles of CO₂, O₂, etc
- ♦ Has no net effect on atmospheric CO₂, without...

Removal of Carbon

- ♦ buried organic material (kerogen)
- ♦ may form fossil fuels (coal and oil)
- ♦ removes carbon by burial in sediments
 - (for times ~100Myr, characteristic of plate tectonics)
- ♦ leaves oxygen in atmosphere "permanently"
- ♦ CO₂ also removed as Calcium Carbonate
 - limestones, chalk etc
- ♦ this is actually the biggest reservoir of carbon
- ♦ but its formation needs Calcium too...

Weathering of crustal (basic silicate) rocks

- ◆ Produces calcium: the other essential ingredient for calcium carbonate formation
- ♦ done by heat, frost, wind, rain (water)
- ♦ accelerated by Carbon Dioxide (carbonic acid)
- ♦ produces calcium, bicarbonate and silicic acid
- ♦ need to form Calcium Carbonate (Calcite etc)
 - this can be formed by inorganic precipitation
 - but living things do it faster

Calcium Carbonate formation

- \bullet Ca⁺⁺ + 2 HCO₃⁻ \rightarrow CaCO₃ + CO₂ + H₂O
- lacktriangle and $Ca^{++} + CO_3^{2-} \rightarrow CaCO_3$
- ♦ done by
 - planktonic plants (algae, especially coccolithophores)
 - produce Calcium Carbonate tests (coccoliths)
 - form e.g. chalks (especially in Cretaceous)
 - and protozoa (e.g. foraminifera)
 - primitive ("proto") animals
 - form calcareous oozes, e.g. globigerina ooze (G. bulloides)

The Silica Cycle

- ♦ silicic acid (H₄SiO₄) is produced by weathering
- ♦ and is removed by Opal formation
- ♦ this is also done by planktonic plants (diatoms)
 - especially under regions of high biological production (e.g. upwelling areas)
 - · accumulation of siliceous oozes
 - producing flints and cherts

Weathering (overall)

- ♦ Erosion of basic silicate rocks
- ♦ removes Carbon Dioxide from atmosphere
 - without affecting the oxygen level
- produces siliceous deposits, and sedimentary carbonate rocks, including e.g.
 - the White Cliffs of Dover, the Dolomites, and the summit of Mount Everest
 - All of which are marine limestones
- which are subsequently sub-ducted, metamorphosed and melted to produce basic silicate rocks....

Photosynthesis & Weathering

- ♦ together have lead to...
- ◆ Deposition and burial of organic and inorganic carbon (fossil fuels, limestones etc)
- ◆ Reduction of atmospheric Carbon Dioxide
 - 99.7 % of which is now sequestered in rocks
 - 97% of the remainder is in the ocean
- ♦ Both these processes need Water
- ♦ and are carried out (or accelerated by) **Life**

Conclusions (1)

- ♦ Earth's atmosphere has been "manufactured", and is maintained by, living things...
 - ... especially by marine planktonic plants
- ♦ major variations of CO₂ concentrations have been driven by the interaction of biogeochemical sinks and geological source processes (vulcanism)
- ♦ these have had major effects (±20°C?) on climate
- ♦ major (Huronian, late Precambrian) glaciations were probably associated with, and possibly partly caused by, low atmospheric CO₂ levels
- ♦ So biogeochemistry is important to climate
 - on long (Myr) time-scales, at least

The evolution of the Earth (Geological Eras)

- ♦ Archaean (3.6 to ~2.5 Gyr BP)
 - Carbon Dioxide & Methane atmosphere
 - bacteria (including photosynthetic cyanobacteria) only
- ◆ Proterozoic (2.5 to 0.7 Gyr BP)
 - elimination of methane (by oxidation)
 - Carbon Dioxide and Oxygen (1%) atmosphere
 - · evolution of eukaryotes
 - (by symbiosis of chloroplasts & mitochondria ?)
 - Cells with nuclei \rightarrow Sex (!) \rightarrow Accelerated evolution
- ♦ Phanerozoic (since 0.7 Gybp : the last 15% of Earth history)
 - The "Cambrian Explosion"
 - Multicellular plants & animals (which need Oxygen)
 - Nitrogen & Oxygen atmosphere (elimination of CO2)
 - reduced Greenhouse Effect: temperature regulation (?)

Primary Production and Nutrients

- ♦ Living things need and make proteins, etc, too
- ◆ Requires Nitrogen (N) and Phosphorous (P)
- ♦ Obtained from nutrients
 - especially nitrate (NO₃²⁻) and phosphate (PO₄³⁻)
- ♦ nutrients are strongly depleted in surface waters
 - by primary production (by algae & cyanobacteria)
- ♦ and regenerated (re-mineralised) in deep waters by respiration
 - especially that due to bacterial processes

The Redfield Ratios

- ◆ The proportions of bio-chemically active elements in organic material (soft tissue) of marine plankton are rather constant (but not completely so)
- ♦ These mean proportions are approximately
 - P:N:C:O:= 1:16:103:172 (Takahashi et al 1985)
- ♦ These are known as the **Redfield Ratios**
- ◆ Variations occur, due to differing proportions of carbohydrates [~(CH₂O)_n], lipids [~(CH₂)_n], proteins, amino acids, etc
- ◆ "inorganic" components including calcite [CaCO₃] and silica [SiO₂] are also present, in variable proportions, in planktonic "shells" (tests)