Simple Climate Models

Lecture 4
Two-dimensional (meridional-vertical)
models

Reasons for wanting 2-D models

- ♦ augment RCM's to allow for spatial variation
 - include meridional transport of heat, water, etc ...
- ♦ augment EBM's to treat radiation (etc) explicitly
 - include vertical transports of heat, water, etc...
- ♦ need to represent both latitude & altitude
 - transport both by MMC and turbulence (eddies)
 - (MMC = mean meridional circulation)
- ♦ also: heat & water transport by ocean
 - primarily due to **meridional** circulation

Nature of 2-D models

- ♦ are invariably Statistical-Dynamical
 - include explicit dynamics (buoyancy, friction, etc...) for the **mean flow only**
 - do not resolve eddies: treated statistically
 - but include fluxes due to eddy correlations
 - which need to be parameterised (turbulence closure)
- ♦ involve parameterisation of eddy fluxes
 - use mixing length & flux-gradient methods
 - diffusivities (etc) $K = U^* L$, $flux = K \times gradient$
 - U^* = characteristic **amplitude scale** for velocity (fluctuations)
 - L = characteristic **spatial scale** of velocity (fluctuations)

Derivation of (im)balance equations in terms of means and eddy fluxes

2-D Ocean Models

- ♦ Will be discussed in detail later by J.M.
- ♦ Involve meridional-vertical transports due to
 - **surface forcing** (interaction with the atmosphere)
 - by radiation, heating and freshwater fluxes (and winds ?)
 - and thus buoyancy forces
 - balancing friction
 - · as Rayleigh drag or eddy viscosity
 - mixing (lateral & diapycnal): usually specified
 - and effects of **rotation** (maybe, somehow)
- ♦ Examples include...
 - Stocker & Wright
 - · Marotzke et al

2-D Atmospheric Models

- ♦ Involve meridional-vertical transports due to
 - radiative forcing (NB : surface albedo, clouds...)
 - interaction with the land & ocean
 - by radiation, heating and freshwater fluxes, & winds
 - buoyancy forces (moist convection)
 - friction
 - as Rayleigh drag or eddy viscosity (momentum transport)
 - mixing (lateral & vertical)
 - needs to be very carefully parameterised
 - rotation (which is very important)
- ♦ Examples include...
 - GISS (Hansen, Stone....)
 - Lawrence Livermore (MacCracken et al)

Meridional processes in the Atmosphere

- ♦ Primary balance is between
 - buoyancy forcing (convection), and friction...
- ◆ Major features of MMC (existence and extent of Hadley & Ferrel cells) can be obtained from
 - transport of zonal (angular, total) momentum
 - by both the MMC and by eddies
 - the **thermal wind** equation (buoyancy forcing)
- ♦ See review by MacCracken & Ghan (1988)
- ♦ Eddy transport of momentum is very important (but not absolutely necessary or wholly dominant)

Eddies (and eddy correlations)

- ♦ are due to **Baroclinic Instability**
 - see Stone (1997) : [Venice lecture notes]
- ♦ lead to eddy viscosity, diffusivity (etc)
 - (Austausch coefficients)
- ♦ but cause transport of momentum up the gradient of relative angular momentum ⇒ a problem!
 - "negative viscosity" (Starr, 1968)
- ◆ Use parameterisation due to Green(1970) and Branscome (1980,1983)
 - see Stone & Yao, J Atmos Sci, 44, 3769-3786, 1987
 - based on conservation of potential temperature and potential vorticity

Mixing Lengths & Eddy Diffusivities parameterisation of Stone & Yao (1990)

$$\langle v'\hat{e}' \rangle = 0.6 \frac{gd^2N}{\hat{e}f^2} \exp(-z/D) \left| \frac{d\hat{e}}{dy} \left(\frac{d\hat{e}}{dy} \right) \right|$$

where $d = H/(1+\tilde{a})$ and $\tilde{a} = \hat{a}H/\hat{a}f$

Processes included in SDM's

- ♦ Heat fluxes
 - Sensible (dry) & Latent (moist)
- ♦ Moisture fluxes (moving freshwater)
 - Evaporation & Precipitation: E-P
- ♦ Momentum fluxes (zonal winds)
- **♦** Radiation
 - transmission, absorption, albedo, clouds (explicit)....
- ♦ Buoyancy & convection
 - leading to mean meridional circulation

What about Clouds?

- ♦ At several (maybe all) levels
- ♦ Must allow for fractional cloud cover
 - to allow for zonal variations
 - and avoid "blinking" instabilities
- ♦ usually parameterised in terms of RH
 - as in many GCM's
 - incorporating type vs. altitude correlation
 - but one could model liquid water explicitly...

Lawrence Livermore SD Climate Model (MacCracken et al)

- ♦ 10 deg latitude resolution (18 bands)
- ♦ 9 vertical levels (5 in troposphere)
- ◆ Stone's parameterisation for eddy fluxes of heat, moisture, etc
- ♦ Prescribed eddy momentum transport (1988)
 - because of the parameterisation problem
- ♦ "Bucket" hydrology
- ♦ Mixed layer ocean only (prescribed heat flux !)
- ♦ Simple (multiple-band) radiation scheme
- ♦ Fractional land/sea/ice cover

GISS 2-D SDM (Hansen, Stone et al)

Utility?

- ♦ Land & sea
- **♦** Continents